Control Samples: 3 Terrifying Tales for Scientists

Lab science cartoon
Carl may not scare her…but did she remember the controls?

Warning: This blog contains stories about phantom serial killers, frankenfoods, mysteriously phosphorylated bands and unrequited ligations that may be disturbing to some people. Children or scientists prone to anxiety over irreproducible results should read this with their eyes shut.

I

Clouds hung low in the sky, and the late October wind howled between the buildings, rattling the window panes of the basement laboratory. The grackles cawed in desperate warning, their flocks changing the evening color palette from gray to black. I was as unsettled as the weather, watching my blot slosh back and forth.

Continue reading “Control Samples: 3 Terrifying Tales for Scientists”

Conflict, CRISPR and the Scientific Method

Scientific inquiry is a process that is revered as much as it is misunderstood. As I listened to a TED talk about the subject, I was reminded that for the general public the foundation of science is the scientific method—the linear process of making an observation, asking a question, forming an hypothesis, making a prediction and testing the hypothesis.

While this process is integral to doing science, what gives scientific findings credibility and value is consensus from the scientific community. Building consensus is the time-consuming process that includes peer review, publication and replication of results. It is also the part of scientific inquiry that so often leads the public to misunderstand and mistrust scientific findings.

Continue reading “Conflict, CRISPR and the Scientific Method”

She’s Going Soft! – A commentary on “hard” and “soft” sciences

scientific-methodThis week I gave notice that I would be terminating my employment at Promega. This was a very difficult decision as I have really enjoyed the past six years here.  While I am leaving Biotech, I will not be leaving science all together.  Over the past few years, I have used my research, analytical, and organizational skills to assist various non-profit organizations in the community.  My primary focus will be on reform of the criminal justice system and racial disparities.  Spreading the word about this decision has resulted in a number of responses (overwhelmingly positive) including the comment that I am going soft! This got me thinking about where the terms hard and soft science came from. Continue reading “She’s Going Soft! – A commentary on “hard” and “soft” sciences”

Elegant Experiments that Changed the World

Crystallographic structure of HIV reversed transcriptase. Wikimedia Commons
Crystallographic structure of HIV reverse transcriptase. Wikimedia Commons

Today, reverse transcriptases are commonplace molecular biology tools, easy to obtain and routinely used in labs for everyday cloning and gene expression analysis experiments. Reverse transcriptase inhibitors have also found widespread use as antiviral drugs in the treatment of retroviral infections.

It’s easy to forget that the existence of reverse transcriptase activity—the ability to convert an RNA template into DNA—was once a revolutionary notion not easily accepted by the scientific community. The idea that RNA could be the template for DNA synthesis challenged the “DNA–>RNA–> Protein” central dogma of molecular biology.

The foundational studies that proved the existence of a reverse transcriptase activity in RNA tumor viruses were described in two papers published back-to-back in Nature in June, 1970. Two of the authors of these studies, Howard Temin of the University of Wisconsin and David Baltimore of the Massachusetts Institute of Technology, were awarded a Nobel Prize for their work in 1975.

In appreciation of the significance of these papers, the editorial introduction published in Nature at the time states:

This discovery, if upheld, will have important implications not only for carcinogenesis by RNA viruses but also for the general understanding of genetic transcription: apparently the classical process of information transfer from DNA to RNA can be inverted.

Before these papers were published, it was known that successful infection of cells by RNA tumor viruses required DNA synthesis. Formation of virions could be inhibited by Actinomycin D—an inhibitor of DNA-dependent RNA polymerase—so it was known that synthesis of viral RNA from a DNA template was part of the viral life cycle. The existence of an intracellular DNA viral genome was therefore indicated, and had been postulated by Temin in the mid 1960’s. However, proof of the mechanism whereby this DNA template was generated from the RNA genome of the infecting virus remained elusive. Continue reading “Elegant Experiments that Changed the World”