Thought to have arrived in Italy on a plant imported from Costa Rica in 2008, the plant pathogen Xylella fastidiosa was first detected there in 2013. Its subsequent unchecked spread resulted in the loss of millions of olive trees across Southern Apulia, a region in Italy responsible for the production of roughly 12% of the world’s olive oil (5). The pathogen moved swiftly and, to date, a total of 20 million olive trees have been infected across Europe.
Continue reading “A Silent Killer: Tracking the Spread of Xylella fastidiosa “plant pathology
Fighting Plant Pathogens Worldwide with the Maxwell® RSC PureFood GMO and Authentication Kit
Among the one trillion or so species that share space on our planet, complex relationships have emerged over time. Such relationships, in which two or more species closely interact, are collectively termed symbiosis. Although it’s commonly assumed that symbiotic relationships are mutually beneficial, this example constitutes only one type of symbiosis (known as mutualism). The traditional predator-prey relationship, clearly a one-sided arrangement, is also an example of symbiosis.
The sheer diversity of microbial species has led to the development of many well-characterized relationships with plants and animals. Perhaps the best-known example of mutualism in this context is the process of nitrogen fixation. In this process, various types of bacteria that live in water, soil or root nodules convert atmospheric nitrogen into forms that are readily used by plants. On the other hand, some types of bacteria-plant relationships are parasitic: the bacteria rely on the plant for survival but end up damaging their host. Parasitic relationships can have devastating ecological and economic consequences when they affect food crops.
Continue reading “Fighting Plant Pathogens Worldwide with the Maxwell® RSC PureFood GMO and Authentication Kit”Cell-Free Expression: Non-Radioactive Detection/Applications
The Transcend™ Non-Radioactive Translation Detection Systems allow nonradioactive detection of proteins synthesized using cell free expression. Using these systems, biotinylated lysine residues are incorporated into nascent proteins during translation, This biotinylated lysine is added to the translation reaction as a precharged ε-labeled biotinylated lysine-tRNA complex rather than a free amino acid. After SDS-PAGE and electroblotting, the biotinylated proteins can be visualized by binding either Streptavidin-Alkaline Phosphatase (Streptavidin-AP) or Streptavidin-Horseradish Peroxidase (Streptavidin-HRP), followed either by colorimetric or chemiluminescent detection. Typically, these methods can detect 0.5–5ng of protein within 3–4 hours after gel electrophoresis and can be used for a variety of proteomics related applications. Examples include: Continue reading “Cell-Free Expression: Non-Radioactive Detection/Applications”