Hot Off the Seep: Novel Cyanobacteria with Hefty Implications for Carbon Cycling

Cyanobacteria, microscopic photosynthetic bacteria, have been quietly shaping our planet for billions of years. Responsible for producing the oxygen we breathe, these tiny organisms play a critical role in the global carbon cycle and are now stepping into the spotlight for another reason: their potential to both understand and potentially combat climate change. 

Image of Volcano Island (Baia di Levante) in Italy where the cyanobacterial strains were isolated. Image contains rock formations and a body of water in the foreground with more rock formations in the background.
Baia di Levente. Marine, volcanic seeps in Italy where UTEX 3221 and UTEX 3222 were discovered. Image credit: Adobe Stock.

Recently, researchers discovered two new strains of cyanobacteria, UTEX 3221 and UTEX 3222, thriving in a marine volcanic seep off the coast of Italy. While cyanobacteria are virtually everywhere there is water and light—from calm freshwater ponds to extreme environments like Yellowstone’s hot springs—this particular habitat is remarkable for its naturally high CO₂ levels and acidic conditions. For these newly identified strains, a geochemical setting like marine volcanic seeps have likely driven the evolution of unique traits that could make them valuable for carbon sequestration and industrial applications. 

Continue reading “Hot Off the Seep: Novel Cyanobacteria with Hefty Implications for Carbon Cycling”

The Microbial Secrets that Lie within Yellowstone National Park Hot Springs

picture of grand prismatic hot spring; steam rising up from orange and yellow hot springs pools
Grand Prismatic Spring, Yellowstone National Park; Photo Credit: Anna Bennett

Yellowstone National Park —located partially in Idaho, Montana and Wyoming—puts modern volcanic activity on full display. Near boiling, ominous pools of water in the form of geysers, mud pots, fumaroles (vents that release steam) and hot springs are all present and active in the park and visitors flock to the park to view a handful of thermal features every year during the peak summer visitor season. Coincidentally, this is when a large portion of scientific research also takes place at the park. Combining both the boardwalk paths that are open to all who visit the park and the expansive backcountry, Yellowstone is host to over 10,000 thermal features. These thermal features are fed by superheated water that travels through a complex groundwater system—think the pipes under your kitchen sink—where subsurface water collects gases and chemical compounds en route to the surface. As a result, near-boiling water that bubbles through to the surface is often rife with chemicals like sulfur, iron or magnesium. Early scientists thought of hot springs as uninhabitable, but as it turns out, these conditions are just the right environment for thermophilic (or “heat-loving”) bacteria to thrive.

Continue reading “The Microbial Secrets that Lie within Yellowstone National Park Hot Springs”