Cancer Moonshot: Solving Tough Problems

At the American Association for Cancer Research meeting in April 2016, then Vice President of the United States, Joe Biden, revealed the Cancer Moonshot℠ initiative— a program with the goals of accelerating scientific discovery in cancer research, fostering greater collaboration among researchers, and improving the sharing of data (1,2). The Cancer Moonshot is part of the 21st Century Cures Act, which earmarked $1.8 billion for cancer-related initiatives over 7 years.  The National Cancer Institute (NCI) and the Cancer Moonshot program have supported over 70 programs and consortia, and more than 250 research projects.  According to the NCI, the initiative from 2017 to 2021 resulted in over 2,000 publications, 49 clinical trials and more than 30 patent filings. Additionally, the launch of trials.cancer.gov has made information about all cancer research trials accessible to anyone who needs it (3).

“We will build a future where the word ‘cancer’ loses its power.”

First Lady, Dr. Jill Biden

In February 2022, the Biden White House announced a plan to “supercharge the Cancer Moonshot as an essential effort of the Biden-Harris administration” (4).  Biden noted in his address that, in the 25 years following the Nixon administration’s enactment of the National Cancer Act in 1971, significant strides were made in understanding cancer. It is now recognized not as a single disease, but as a collection comprising over 200 distinct diseases. This period also saw the development of new therapies and enhancements in diagnosis. However, despite a reduction in the cancer death rate by more than 25% over the past 25 years, cancer continues to be the second leading cause of death in the United States [4].

The Cancer Moonshot is a holistic attempt to improve access to information, support and patient experiences, while fostering the development of new therapeutics and research approaches to studying cancer. In this article, we will focus on research, diagnostics and drug discovery developments.

Solving for Undruggable Targets

KRAS , a member of the RAS family, has long been described as “undruggable” in large part because it is a small protein with a smooth surface that does not present many places for small molecule drugs to bind. The KRAS protein acts like an off/on switch depending upon whether it has GDP or GTP bound.  KRAS mutations are associated with many cancers including colorectal cancer (CRC), non-small cell lung cancer (NSCLC), and pancreatic ductal adenocarcinoma (PDAC). The G12 position in the protein is the most commonly mutated; G12C accounts for 13% of the mutations at this site, and is the predominant substitution found in NSCLC, while G12D is prevalent in PDAC (5).

Continue reading “Cancer Moonshot: Solving Tough Problems”

Cancer Preventing Vaccines: Unleashing the Potential of Tumor Antigens

It has been more than 100 years since Dr. William B. Coley, known today as the “Father of Immunotherapy,” made the first recorded attempt to mobilize the immune system as a means of treating cancer (9). Decades later, the discovery of T cells and the vital role they play in the immune system set the groundwork for many new immunotherapy treatments, such as those involving monoclonal antibodies, cytokines, CAR T cells, and checkpoint inhibitors.

Continue reading “Cancer Preventing Vaccines: Unleashing the Potential of Tumor Antigens”

New Study Suggests Long Mononucleotide Repeat Markers Offer Advantages for Detecting Microsatellite Instability in Multiple Cancers

A new study, published in the Journal of Molecular Diagnostics (1), highlights the potential of using long mononucleotide repeat (LMR) markers for characterizing microsatellite instability (MSI) in several tumor types. The paper is a result of a collaborative effort between researchers from Johns Hopkins University and Promega to evaluate the performance of a panel of novel LMR markers for determining MSI status of colorectal, endometrial and prostate tumor samples.

Microsatellite instability (MSI) is the accumulation of insertion or deletion errors at microsatellites, which are short tandem repeats of DNA sequences found throughout the genome. MSI in cancerous cells is the result of a functional deficiency within one or more major DNA mismatch repair proteins (dMMR). PCR-based MSI testing is a commonly used method that can help understand a tumor’s genomic profile as it relates to MMR protein function.

Historically, MSI has been a biomarker associated with Lynch syndrome, the hereditary predisposition to colorectal and certain other cancers. In recent years, research interest in MSI has exploded, driven by the discovery that its presence in tumor tissue can be predictive of a positive response to anti-PD-1 immunotherapies (2,3).

Continue reading “New Study Suggests Long Mononucleotide Repeat Markers Offer Advantages for Detecting Microsatellite Instability in Multiple Cancers”

There’s a Vaccine for That—Could mRNA Vaccines be Used to Prevent Cancer Recurrence?

mRNA vaccines came roaring onto the public stage in 2020. In the United States and Europe, two of the vaccines that are being used against the SARS-CoV-2 virus are mRNA vaccines. The scientific community has been talking about the potential of this technology against infectious diseases as well as cancer for several years, but no one thought that the first mRNA vaccines would make such a huge, and public, debut.

One big benefit of mRNA vaccines is the speed at which they can be developed. mRNA vaccines use messenger RNA particles to teach our cells to make a bit of protein, which then triggers our body’s immune response, and it is relatively easy to synthesize large amounts of mRNA in a laboratory. As promising as this sounds for infectious diseases, the application of mRNA vaccines for oncology might be even more exciting.

Could mRNA vaccines be used for personalized cancer vaccines?
Continue reading “There’s a Vaccine for That—Could mRNA Vaccines be Used to Prevent Cancer Recurrence?”