Many deep sea creatures are bioluminescent. However, before documenting the luminescence of the kitefin shark, Dalatias licha, there has never been a nearly six-foot long luminous vertebrate creature. In a recent study, Mallefet and colleagues examined three species of sharks: Dalatias licha, Etmopterous lucifer, and Emopterus granulosus and documented their luminescence for the first time. These bioluminescent sharks are the largest bioluminescent creatures known.
Continue reading “Bioluminescent Sharks Set the Sea Aglow”ocean
Anti-Cancer Drugs Are Pro-Coral
With average sea surface temperatures increasing around the world, coral bleaching events are growing in extent and severity. More than two thirds of the corals in the Great Barrier Reef, the world’s largest coral reef, have already bleached. While the physiological consequences of coral bleaching are well-studied, we still don’t fully understand how bleaching happens on a cellular level.
Steve Palumbi at Stanford University is delving deeper into the mechanisms by which coral bleaching occurs. In 2018, Promega pledged $3 million over three years to the nonprofit Revive & Restore Catalyst Science Fund, to identify and develop advanced techniques for conservation, enhancing biodiversity, and genetic rescue. Palumbi was awarded the first grant from this fund to study the genomic stress trigger that causes corals to bleach in warming oceans.
Continue reading “Anti-Cancer Drugs Are Pro-Coral”Here Comes the Sun: How to Protect Yourself and the Coral Reefs
Sunscreen usage is increasing, with more people using SPF to prevent the very real threats of skin cancer and early signs of aging. While slathering on the sunscreen is unarguably important to protect your skin from the sun, new concerns arise linking sunscreen chemicals to coral reef bleaching, as an estimated “14,000 tons of sunscreen is believed to be deposited in the oceans annually.”
Coral reefs are the most productive marine ecosystem known. Coral reefs protect coastlines from storm surge and support commercial and recreational fisheries and tourism. Unfortunately, certain chemicals in sunscreen are causing coral reefs to bleach; thus, becoming more susceptible to viral infections. The reefs eventually turn white and die. Coral reef bleaching is the leading cause of coral reef deaths worldwide. This conversation is an important one to discuss leading up to the celebration of World Oceans Day on June 8.
Chemical recreational sunscreen contains oxybenzone, a toxic synthetic molecule. Oxybenzone is prevalent in the majority of mainstream sunscreen brands. This ingredient results in extreme harm to marine organisms. The Ocean Foundation emphasized that, “A single drop of this compound in more than 4 million gallons of water is enough to endanger organisms.” Even if you do not physically go in the water, the chemical can be washed into the ocean through the sand.
In response to this issue, many countries and resorts are banning “reef-toxic” sunscreen. Hawaii and Key West recently passed a bill banning the sale and distribution of any sunscreen that contains 10 toxic ingredients, including oxybenzone. This bill goes into effect January 2021. Many dermatologists are concerned for public safety, highlighting that banning certain sunscreens will decrease overall use. Unprotected sun exposure it the most preventable risk factor for skin cancer. From the perspective of a customer, it is important to be actively informed on what constitutes a “reef-safe” sunscreen. Oxybenzone can pop-up in many moisturizers, primers, and foundations that contain SPF. Reef-friendly options include: any version of chemical sunscreen that does not contain oxybenzone.
With a commitment to protect the environment, Promega has pledged $3 million over the next three years to the Revive and Restore Catalyst Science fund. Organization founders and scientists are focused on an extremely long-term view of wildlife conservation. This fund invests in proof-of-concept research projects that offer innovative solutions for conservation challenges and threatened ecosystems. Marine biologist Steve Palumbi was awarded the first Fund grant to investigate the triggers that may cause corals to bleach. Palumbi reflects on his research in an interview with Stanford News stating, “The report reflects a sense of urgency. We need to start helping corals now, so that as the climate gets worse—and it will inevitably get worse—we’re a little bit in front of the problem. There’s this amazing sense that we all have to just jump in and try ideas and fail so that, eventually, someone comes up with the answers we need.”
Millions of Pickles, Pickles in the Sea
For a few years beginning late in 2013, warmer ocean conditions in the eastern Pacific prompted the appearance of unexpected species and toxic algal blooms that devastated others. When temperatures cooled in 2017, the marine ecosystems seemed to be returning to normal. Except for the pyrosomes. Although these previously rare organisms did start to wash up on beaches during the periods of warming, they began to appear by the millions from Oregon to Alaska that spring.
Some combination of ideal conditions led pyrosomes to multiply, dominate the ocean surface and wash up on beaches along the US and Canadian Pacific Coasts. Pyrosomes typically exist offshore, far below the surface in warm, tropical waters all over the world. Their sudden proliferation in other areas is likely due to the warm, Pacific ocean “blob,” although atypical sea currents and changes in pyrosome diet have been offered as other possible explanations.
While the appearance of pyrosomes impeded the efforts of fisherman by clogging nets and filling hooks, greater ecological effects have yet to be observed. As we celebrate World Oceans Month, pyrosomes offer a mesmerizing example of the astounding biological diversity our oceans have to offer and, perhaps, a cautionary tale of the impact climate change can have on those marine lifeforms.
The pyrosome species common in the NE Pacific, Pyrosoma atlanticum, goes by a few other colorful names. Each name reveals something captivating about these creatures. Commonly called “sea pickles” due their size, shape and bumpy texture (like a transparent cucumber), these are not single organisms, but colonies formed by hundreds or thousands of individual multicellular animals call zooids.
Continue reading “Millions of Pickles, Pickles in the Sea”