Glycogen is a fundamental molecule in energy metabolism, serving as the critical storage form of glucose that supports cellular health and energy homeostasis. As a polysaccharide, glycogen is essential for maintaining stable energy levels, particularly during periods of fasting and physical exertion. This article will examine glycogen’s synthesis, storage, and utilization, along with its broader significance in human health and disease. Understanding glycogen’s role can provide valuable insight into energy regulation and metabolic health.
Branched-chain amino acids (BCAAs) are essential nutrients that play a significant role in muscle metabolism and overall health. Comprised of leucine, isoleucine, and valine, BCAAs cannot be synthesized by the body and must be obtained through diet. Recent research has highlighted how the metabolic pathways are influenced by BCAAs, such as their ability to activate mTOR signaling, which is vital for muscle protein synthesis (Choi, 2024). Beyond muscle growth, BCAAs may support cognitive function and metabolic health, with ongoing research exploring their broader benefits in disease management. This article explores the diverse roles of BCAAs and their impact on health and diseases
β-Hydroxybutyrate (BHB), the most abundant ketone body, is a crucial molecule that sustains energy production during periods of glucose deprivation. Whether you are fasting, adhering to a ketogenic diet, or simply interested in metabolic flexibility, BHB offers key insights into how our bodies adapt to alternative energy sources. This article will delve into how BHB is produced, the diverse roles it plays, and its implications for health and disease.
Nicotinamide adenine dinucleotide (NAD) exists in two forms in the cell: NAD+ (oxidized) and NADH (reduced). This molecule plays a pivotal role in metabolic processes, serving as a key electron carrier in the redox reactions that drive cellular metabolism. The balance between these two forms, commonly expressed as the NAD+/NADH ratio, is crucial for maintaining cellular function and the intracellular redox state. This article explores the significance of this ratio, how it impacts cellular processes, and the consequences of NAD+/NADH ratio dysregulation.
NAD is a pyridine nucleotide. It provides the oxidation and reduction power for generation of ATP by mitochondria. For many years it was believed that the primary function of NAD/NADH in cells was to harness and transfer energy from glucose, fatty and amino acids through pathways like glycolysis, beta-oxidation and the citric acid cycle.
However NAD also is recognized as an important cell signaling molecule and substrate. The many regulatory pathways now known to use NAD+ in signaling include multiple aspects of cellular homeostasis, energy metabolism, lifespan regulation, apoptosis, DNA repair and telomere maintenance.
This resurrection of NAD importance is due in no small part to the discovery of NAD-using enzymes, especially the sirtuins.
Jonathan Campbell, PhD, asked me to write that he is taller and a bit more handsome than most scientists. I will neither confirm nor deny those assertions, but I will acknowledge that Dr. Campbell has a unique way of describing his recent collaborations and research on metabolism and Type 2 diabetes.
“The rest of the world has been thinking that it’s almost like the emperor has no clothes,” he says. “But we’re the guys who came right in and said ‘Hm, that dude’s naked.’”
On March 13, only a few days before the COVID-19 pandemic caused widespread shutdowns in Wisconsin, Jon visited the Promega headquarters in Madison, Wisconsin to meet with R&D scientists and discuss opportunities for new technologies. Over the course of a few hours, Jon and his collaborator Matthew Merrins, PhD, demonstrated how their research challenges dogma and could fundamentally change our understanding of postprandial metabolism. For five decades, the paradigm of glucose control focused on a model that positioned insulin and glucagon as diametrically opposing forces to raise or lower glycemia. As Jon states, things did not always add up.
“For years, everybody has been saying ‘Glucagon is the antithesis of insulin,’ right? Insulin is a good guy. It makes glucose come down. Glucagon is a bad guy. It makes glucose go up. And these two are in this cosmic battle against each other over the control of glycemia. Well, we asked, ‘Why do the beta cells that secrete insulin have glucagon receptors?’ And as you follow the breadcrumbs, you find that these two things are actually working in cooperation. Without that cooperation, the whole thing falls apart,” Jon says.
The Incretin Effect
In addition to exploring the complex biology of glucagon, Jon’s lab studies the Incretin Effect, a mechanism by which the gut influences the secretion of insulin in the pancreas. Past research revealed that rises in blood-glucose matched closely whether glucose was administered orally or intravenously. However, the amount of insulin secreted was 3—4 times higher following oral intake. This is a result of the actions of GLP1 and GIP, the two major human incretins. GLP1 and GIP bind to G-protein coupled receptors in the beta cells of the pancreas to induce insulin secretion. Insulin then acts to promote glucose uptake, reducing glycemia. Many researchers believe that dysfunction of the incretin mechanisms contributes to the reduced insulin secretion seen in individuals with Type 2 diabetes.
“If we can understand the mechanisms of the incretin effect,” Jon says, “We may be able to understand the pathophysiology driving Type 2 diabetes. My hope is that people are going to realize that diabetes is not just a glucose disease. Maybe we have been looking at this too much from a glucose-centric viewpoint. Clearly, glucose is a big problem with diabetes, but it’s not just glucose. This is a metabolic disease, and in order to understand how to fix a metabolic disease, you need to look at all the metabolites and the way overall metabolism is dysregulated.”
Research on the incretin effect has already supported the development of two new classes of drugs for Type 2 diabetes: GLP1R agonists and DPP4 inhibitors (DPP4 is an enzyme that degrades GLP1).
“We collaborate with industry quite a bit, especially pharmaceuticals. We are helping them understand the mechanism of action by which their drugs may work, and that funding has allowed us to expand and grow our program a lot in our first five years. I like to bridge that line between basic and translational science—translating basic science into the clinic.”
The Search for New Technology
Jon wasn’t visiting Promega in mid-March with the goal of seeing the world before COVID-19-related travel restrictions were announced. He’s constantly looking for new collaborations in which both parties can bring something unique to the table. Jon was one of the first to try the new Lumit™ Insulin and Glucagon Immunoassays, which he says are easier to use and have produced better results in his work with glucagon than radioimmunoassays or ELISAs.
“People like Promega scientists say they have a new technology, and they’re looking for someone to try it out it in real-world situations. I don’t have that kind of technology, but I know how to apply it, so there’s a lot of value there. It’s a no-brainer to talk to people about how we can find synergy when the two of us both bring something like that to the table. For some applications, the Lumit™ assays are blowing out whatever we can do, and they’re also incredibly easy to use. So that was a significant improvement in our workflow.”
When asked what he hopes to accomplish in the next few years, Jon similarly points to innovative technology and techniques.
“We have to say, ‘What’s the next innovative step forward, and what new tools can we bring?’ We need to figure out new ways to interrogate the systems that we’re interested in. Then we can start to strip away new biology. If we ask the right question and we answer definitively, we’ll end up with three more questions. Which is great, because we’ll always have more work to do.”
Lumit™ Immunoassays provide a simple and fast alternative to conventional immunoassay methods including sandwich ELISAs and Western blots. Learn more here.
Working on diabetes research? Read more about Promega assays to measure insulin activity in real time.
RNA molecules have become a hot topic of research. While I was taught about messenger RNA (mRNA), ribosomal RNA (rRNA) and transfer RNA (tRNA), many more varieties have come into the nomenclature after I graduated with my science degrees. Even more interesting, these RNAs do not code for a protein, but instead have a role in regulating gene expression. From long non-coding RNA (lncRNA) to short interfering RNA (siRNA), microRNA (miRNA) and small nucleolar RNA (snoRNA), these classes of RNAs affect protein translation, whether by hindering ribosomal binding, targeting mRNA for degradation or even modifying DNA (e.g., methylation). This post will cover the topic of microRNAs, explaining what they are, how researchers understand their function and role in metabolism, cancer and cardiovascular disease, and some of the challenges in miRNA research.
What are microRNAs? MicroRNAs (miRNAs) are short noncoding RNAs 19–25 nucleotides long that play a role in protein expression by regulating translation initiation and degrading mRNA. miRNAs are coded as genes in DNA and transcribed by RNA polymerase as a primary transcript (pri-miRNA) that is hundreds or thousands of nucleotides long. After processing with a double-stranded RNA-specific nuclease, a 70–100 nucleotide hairpin RNA precursor (pre-miRNA) is generated and transported from the nucleus into the cytoplasm. Once in the cytoplasm, the pre-miRNA is cleaved into an 18- to 24-nucleotide duplex by ribonuclease III (Dicer). This cleaved duplex associates with the RNA-induced silencing complex (RISC), and one strand of the miRNA duplex remains with RISC to become the mature miRNA.
Have trouble finding your car keys this morning because you forgot where you left them? Or maybe you can’t remember the name of the new person who just joined the department down the hall? Before you blame age for your faulty memory, take a look at your diet. New research suggests that low levels of omega-3 fatty acids in your diet could be disrupting biochemical signaling in your brain and impairing your ability to learn and remember. And, consumption of high levels of fructose, often found in sugary beverages, could be making it worse. So, put down that soda and keep reading to learn how those empty calories might be sabotaging your memory and what you can do about it.
XWe use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To learn more about our approach to Privacy we invite you to Read More
By clicking “Accept All”, you consent to the use of ALL the cookies. However you may visit Cookie Settings to provide a controlled consent.
We use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To find out more about cookies and how to manage cookies, read our Cookie Policy.
If you are located in the EEA, the United Kingdom, or Switzerland, you can change your settings at any time by clicking Manage Cookie Consent in the footer of our website.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-advertisement
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
gdpr_status
6 months 2 days
This cookie is set by the provider Media.net. This cookie is used to check the status whether the user has accepted the cookie consent box. It also helps in not showing the cookie consent box upon re-entry to the website.
lang
This cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
SC_ANALYTICS_GLOBAL_COOKIE
10 years
This cookie is associated with Sitecore content and personalization. This cookie is used to identify the repeat visit from a single user. Sitecore will send a persistent session cookie to the web client.
vuid
2 years
This domain of this cookie is owned by Vimeo. This cookie is used by vimeo to collect tracking information. It sets a unique ID to embed videos to the website.
WMF-Last-Access
1 month 18 hours 24 minutes
This cookie is used to calculate unique devices accessing the website.
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
IDE
1 year 24 days
Used by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie
15 minutes
This cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
This cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
YSC
session
This cookies is set by Youtube and is used to track the views of embedded videos.
_gat_UA-62336821-1
1 minute
This is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.