In an era where science moves at a rapid pace, integrating automation into your lab is not just beneficial but essential. When you automate your lab, you free up an invaluable resource: time. From scaling up operations and handling increased demand to improving consistency and reducing manual errors, automation can be the key to achieving higher throughput, saving costs, and—most importantly—enabling researchers to focus on the science rather than the process. However, embarking on a lab automation project requires careful planning, clear goals and an understanding of the intricacies involved in automating complex biological workflows.
Continue reading “Transform Your Research Lab with our Comprehensive Automation Resources”lab automation
Exploring Instrumentation for Your Lab: Particle Movers vs. Liquid Handlers
Some laboratory processes are time-consuming and tedious. Automation highly manual processes such as nucleic acid extraction can increase your lab’s throughput and improve the overall consistency of your results. Unfortunately choosing and implementing one of these systems can seem overwhelming. As you begin to evaluate the automation needs of your lab, one of the first decision points is the type of platform you need. Do you need a liquid handler or a magnetic particle mover?
Continue reading “Exploring Instrumentation for Your Lab: Particle Movers vs. Liquid Handlers”The Largest Maxprep Liquid Handler Installation Ever: Kigali Rwanda, 2022
“It was just a sea of Promega everywhere,” says Rebecca Roberts, a Promega Field Applications Scientist. “Floor to ceiling, piled up with Maxwell instruments, Maxprep Liquid Handlers, all the accessories and consumables…”
In her role on the Field Application Scientists team, Rebecca travels the United States installing the Maxprep Liquid Handler in customer labs and training scientists to operate the system and incorporate it into their workflow. This instrument automates the pre- and post-processing steps in a nucleic acid purification workflow. It’s a large and sophisticated instrument that takes up roughly four feet of lab bench space and weighs up to 220 pounds. It is intended for research use only, but during the COVID-19 pandemic, the Maxprep Liquid Handler, Maxwell RSC 48 Instrument, and several Maxwell purification kits were recommended for nucleic acid extraction protocols in the CDC 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic Panel Emergency Use Authorization (EUA).
When an instrument is sold, Rebecca and a Service Engineer spend three days on-site installing it and training a small group of staff to use it. One Maxprep instrument at a time is typical. On rare occasions, Rebecca might install two on a single trip. However, in 2022, Rebecca joined a multinational team of Promega scientists and engineers in Kigali, Rwanda for an order that was anything but typical.
“We knew a large order from this customer was a possibility,” Rebecca says, “But I certainly wasn’t expecting an order of ten.”
This was the largest installation of Maxprep instruments Promega has ever seen from a single order. The customer also had a hard deadline that required delivery, installation and training to be complete in only six weeks – half the time usually quoted for a single instrument.
In the end, ten Maxprep instruments were installed at the National Reference Laboratory in Kigali, and more than twenty people were trained to use the systems for RNA extraction to support COVID-19 testing at a major international meeting. The order was a success, but that six week journey was a wild ride that depended on the hard work and dedication of Promega teams on both sides of the Atlantic.
And the impact of this work is still growing.
Continue reading “The Largest Maxprep Liquid Handler Installation Ever: Kigali Rwanda, 2022”Shifting Gears: Repurposing Instruments for Changing Needs
The thought of an expensive instrument falling out of use and gathering dust on the shelf is enough to bring a tear to any lab manager’s eye. An instrument that once served a key purpose and now functions only as a “paperweight” is a tragic waste of valuable resources. Fortunately, it is sometimes possible to breathe new life into neglected tools and to retrofit or repurpose equipment to meet the new needs that will inevitably arise in a changing lab environment.
Continue reading “Shifting Gears: Repurposing Instruments for Changing Needs”Scaling Up to Measure 40,000 Data Points a Day with GloMax® Microplate Readers
Traditional approaches for protein degrader compound screening like Western blotting can be laborious, time consuming and cannot be streamlined with automation. By implementing a high-throughput, automated workflow that uses our CRISPER/Cas9 knock-in cell lines, live-cell bioluminescent assays and sensitive GloMax® Discover microplate readers, our custom assay services offer protein degradation profiling at an accelerated rate.
To do this, we collaborated with HighRes® Biosolutions, to develop an automated system that can screen up to 100 384-well plates each day, generating roughly 40,000 data points with minimal hands-on work.
Learn how bioluminescent tools like HiBiT and NanoBRET™ technology can help you answer key questions in your targeted protein degradation research.
An important step of building this system is to integrate four GloMax® Discover microplate readers into the automated system using instrument’s built-in SiLA2 communication driver. The driver software makes it easy to connect the microplate readers with HighRes® Biosolution’s robotic components.
Check out our setup in the video below.
Continue reading “Scaling Up to Measure 40,000 Data Points a Day with GloMax® Microplate Readers”It’s Time to Automate Your Plasmid Purification
In the fifty years since the first reported transformation of recombinant plasmids into bacteria (1), plasmid cloning has become one of the pillars of synthetic biology research and manufacturing biopharmaceuticals.
But purifying plasmids is no small feat. It can often take hours of hands-on time to go from culture to eluate with low-throughput and time-sensitive manual methods. Automating plasmid purification is the way to go, whether you’re isolating a single plasmid from a large volume culture or creating a library of thousands of different constructs.
Continue reading “It’s Time to Automate Your Plasmid Purification”Why Bring Automated Nucleic Acid Extraction into Your Lab?
Nucleic acid extraction is a time-consuming, resource-intensive process, but it doesn’t have to be. Automated systems are becoming more and more accessible and often can be operated with simple “plug and play” kits, freeing valuable resources
With these systems increasingly within reach, perhaps you’re thinking about introducing automated nucleic acid extraction into your lab. As you consider your options, here’s eight reasons why we think you should automate your nucleic extraction workflows.
8 Reasons to Automate Nucleic Acid Extraction in Your Lab:
1. Reach your project milestones and publish faster.
In the fast-paced, competitive environment of research and technology development, efficiency is key to reaching project milestones and publishing your work. Managing your resources effectively–especially time–can help you reach those goals.
Time spent on manual nucleic acid extractions is time lost on parallel work, which cuts down productivity. Automation is not only often faster than manual preparations, but it also frees your team to do more valuable hands-on work.
As an example, the Maxwell® RSC cuts 40 minutes of hands-on-time per 16 samples. As the number of samples scales to 96 and beyond, liquid handlers like the Hamilton Star or Tecan Fluent can save many hours of hands-on-time per day.
Continue reading “Why Bring Automated Nucleic Acid Extraction into Your Lab?”How Promega Helped Our Lab Scale Up Drug Discovery for Bloodborne Pathogens
This blog was written by Sebastien Smick, Research Technician in Dr. Jacquin Niles’ laboratory at Massachusetts Institute of Technology (MIT)
Our lab is heavily focused on the basic biology and drug discovery of the human bloodborne pathogen Plasmodium falciparum, which causes malaria. We use the CRISPR/Cas9 system, paired with a TetR protein fused to a native translational repressor alongside a Renilla luciferase reporter gene, to conditionally knock down genes of interest to create modified parasites. We can then test all kinds of compounds as potential drug scaffolds against these gene-edited parasites. Our most recent endeavor, one made possible by Promega, is a medium-low throughput robotic screening pipeline which compares conditionally-activated or-repressed parasites against our dose-response drug libraries in a 384-well format. This process has been developed over the past few years and is a major upgrade for our lab in terms of data production. Our researchers are working very hard to generate new modified parasites to test. Our robots and plate readers rarely get a day’s rest!