The human body has an incredible capacity for self-repair. Our skin can regenerate after a small cut, bones can heal after fractures and even the liver can regrow to its original size after 70% is lost or removed (3). However, when it comes to the heart, the story is very different. As Miley Cyrus once sang, “nothing breaks like a heart” – and science agrees. Unlike other organs, the heart has almost no ability to regenerate itself after injuries. In instances like myocardial infarctions, more commonly known as heart attacks, large amounts of cardiomyocytes (CMs)—the cells responsible for heart muscle contraction—are lost and cannot be regenerated, causing the formation of non-regenerative fibrotic scar tissue and, ultimately, decline in heart function (1).
Continue reading “Do Zebrafish Hold the Key to Heart Regeneration? “cells
Tips for Multiplex Cell-Based Assay Success
Analyzing more than one cellular biomarker (multiplexing) in a single sample is advantageous for a number of reasons. Multiplexing allows researchers to save money and time, while conserving critical samples. In addition, understanding the relationship between cell biomarkers can provide a more complete picture of cell health, leading to improved predictive models for drug discovery. Understanding biomarker relationships can also minimize ambiguity in the data set and validate if a treatment effect is real or an artifact of the system. To avoid repeat experiments and extract the most physiologically relevant data from multiplex cell-based assays, we discuss considerations around assay choices, cell type, cell culture, treatment parameters, detection and appropriate experimental controls.
Continue reading “Tips for Multiplex Cell-Based Assay Success”