Revolutionizing Food Security: How Biotechnology Contributes to Sustainability and Safety

field of crops/food

Projections from the United Nations suggest that the global population reached 8 billion in 2022. By 2030, the United Nations expect the population will grow to 8.5 billion (1).  In order to sustain the rapidly expanding global population, innovative approaches in the agriculture sector are required to ensure food security and safety while maintaining sustainable practices.

Centuries of cultivating crops and raising livestock have honed our current agricultural methods. In the 21st century, these techniques encounter persistent challenges. Environmental factors such as soil degradation, water scarcity, and climate change pose significant threats to production. Additionally, the constant risks posed by pests and diseases can devastate both crops and livestock.

Read more about how the current avian flu crosses species and affects livestock.

The agriculture sector’s challenge of feeding the world sustainably lies in the limited access to natural resources like land and water. Unfortunately, these resources don’t grow with our population, so we need to find a way to increase productivity per unit of land (2). Ideally, using less water and potentially harmful pesticides.

Biotechnology offers innovative solutions that support sustainable agriculture practices to not only enhance food production, but also increase nutritional value and safety of our food supply.

Biotechnology in Agriculture: Enhancing Crop Yield and Resilience:

For much of the history of agriculture, breeding programs have involved selectively breeding desirable traits to increase yield, quality, and resilience. In the age of biotechnology, agriculturalists are revolutionizing this practice with the help of cloning and CRISPR technologies.

Continue reading “Revolutionizing Food Security: How Biotechnology Contributes to Sustainability and Safety”

Bringing Cutting Edge Technologies to Academic Researchers Through the Academic Access Program

This post was written by guest blogger Iain Ronald, Director Academic/Government Market Segment at Promega.

My back story is similar to most of you reading this blog, high school education, undergraduate degree then onto a postgraduate degree. However, over 25 years ago during my undergraduate study, I was fortunate enough to work in the lab of Professor Ray Waters studying DNA damage in S. cerevisiae as a model organism and at the time PCR was cutting-edge technology and the PCR license was in full effect. However, there was one company that was fighting the good fight to democratize PCR for the good of the scientific community, Promega.

I became enamored with Promega then, and the next steps in my career were taken with a view to working at this company who, for all intents and purposes, seemed to really care about the progression of science beyond self-aggrandizement.

Now that I am working at Promega in a position where I can bring benefit to our academic community, I have pondered what I can do to equal the disruptive attitude I observed in this company all those years ago when they were fighting the then “big tech” for the enablement of the scientific community. 

Reporter bioassays are one of hte many offerings of the academic access program.
Continue reading “Bringing Cutting Edge Technologies to Academic Researchers Through the Academic Access Program”

RNA Extraction for Clinical Testing—Do Not Try this with Home-brew

This blog was written with much guidance from Jennifer Romanin, Senior Director IVD Operations and Global Service and Support, and Ron Wheeler, Senior Director, Quality Assurance and Regulatory Affairs at Promega.

A Trip Down Memory Lane

Back in the day when we all walked two miles uphill in the snow to get to our laboratories, RNA and DNA extraction were home-brew experiences. You made your own buffers, prepped your own columns and spent hours lysing cells, centrifuging samples, and collecting that fluorescing, ethidium bromide-stained band of RNA in the dark room from a tube suspended over a UV box. Just like master beer brewers tweak their protocols to produce better brews, you could tweak your methodology and become a “master isolater” of RNA. You might get mostly consistent results, but there was no guarantee that your protocol would work as well in the hands of a novice.

Enter the biotechnology companies with RNA and DNA isolation kits—kits and columns manufactured under highly controlled conditions delivering higher quality and reproducibility than your home-brew method. These systems have enabled us to design ever more sensitive downstream assays–assays that rely on high-quality input DNA and RNA, like RT-qPCR assays that can detect the presence of a specific RNA molecule on a swab containing only a few hundred cells. With these assays, contaminants from a home-brew isolation could result in false positives or false negatives or simply confused results. Reagents manufactured with pre-approved standard protocols in a highly controlled environment are critical for ultra sensitive tests and assays like the ones used to detect SARS-CoV-2 (the virus that causes COVID-19).

The Science of Manufacturing Tools for Scientists

There are several criteria that must be met if you are producing systems that will be sent to different laboratories, used by different people with variable skill sets, yet yield results that can be compared from lab to lab.

Continue reading “RNA Extraction for Clinical Testing—Do Not Try this with Home-brew”

Tips for Successful Dual-Reporter Assays

Updated 02/12/2021

Previously, we described some of the advantages of using dual-reporter assays (such as the Dual-Luciferase®, Dual-Glo® Luciferase and the Nano-Glo® Dual-Luciferase® Systems). Another post describes how to choose the best dual-reporter assay for your experiments. For an overview of luciferase-based reporter gene assays, see this short video:

These assays are relatively easy to understand in principle. Use a primary and secondary reporter vector transiently transfected into your favorite mammalian cell line. The primary reporter is commonly used as a marker for a gene, promoter, or response element of interest. The secondary reporter drives a steady level of expression of a different marker. We can use that second marker to normalize the changes in expression of the primary under the assumption that the secondary marker is unaffected by what is being experimentally manipulated.

While there are many advantages to dual-reporter assays, they require careful planning to avoid common pitfalls. Here’s what you can do to avoid repeating some of the common mistakes we see with new users:

Continue reading “Tips for Successful Dual-Reporter Assays”

Cloning Modified Blunt-ended DNA Fragments into T-Vectors

Tailing blunt-ended DNA fragments with TaqDNA Polymerase allows efficient cloning of these fragments into T-Vectors such as the pGEM®-T Vectors. This method also eliminates some of the requirements of conventional blunt-end cloning — Fewer steps, who can argue with that?

Blue/White colony screening helps you pick only the colonies that have your insert.
Blue/White colony screening helps you pick only the colonies that have your insert.

Continue reading “Cloning Modified Blunt-ended DNA Fragments into T-Vectors”

A Successful Launch for Biotechnology: The Basics for Middle School Teachers

Megan Wagner (left) and Katie Aliota, science teachers from Cardinal Heights Upper Middle School in Sun Prairie, WI; load an agarose gel with colored dyes.
Megan Wagner (left) and Katie Aliota, science teachers from Cardinal Heights Upper Middle School in Sun Prairie, WI; load an agarose gel with colored dyes.

Today’s blog is jointly written by guest blogger  Peter Kritsch, Biotechnology and Biology Teacher at Oregon High School and contributor Barbara Bielec. K-12 Program Director at the BTC Institute.

The BTC Institute has offered two graduate-level courses for high school teachers for many summers.  Biotechnology: The Basics and Biotechnology: Beyond the Basics have become very popular and are also drawing the interest of middle school teachers.  So, this June we piloted a new 3-day course designed specifically for them.  Representing different schools and districts, eight teachers learned how to extract DNA from strawberries, pour and run agarose gels, identify a taste gene, and received information on lots of resources to use with their students.

Through the BTC Institute’s Biotechnology Teacher Academy, these courses are offered at no cost and $300-$500 stipends are available.  A main Academy goal is to provide high quality professional development opportunities that prioritize content that participants can smoothly incorporate into their classrooms.   Our commitment to stipends is generously supported by the Wisconsin Space Grant Consortium (WSGC), Promega Corporation, Madison College and the BTC Institute.  (All three courses are offered for graduate credits from Edgewood College, and Viterbo University also offers credits for the two geared to high school teachers.)

The importance of this approach is affirmed by Sherry Jacobsen (Kromrey Middle School in Middleton, WI):

This [course] is such a gift to teachers!  Many times we aren’t treated as professionals so it was nice to be treated as a professional without a high personal cost.  I love how the course is so practical.  Many courses are only in theory and no application.  I can take so many useful ideas with me.

Biotechnology is making its way into the middle school classroom. With access to the BTC Institute’s Equipment Loan Program, teachers can check out micropipettes, gel boxes & power supplies, an ultraviolet light box and other equipment for up to two weeks.  Course participant Amy Reimer (Core Knowledge Middle School in Verona, WI), has already taken advantage of this program and noted that it was “great to review procedures” through the course and plans to borrow equipment again this coming year. Continue reading “A Successful Launch for Biotechnology: The Basics for Middle School Teachers”

The University of Wisconsin Master of Science in Biotechnology Program Celebrates Its 15-Year Anniversary

The University of Wisconsin Master of Science in Biotechnology Program began with its first cohort of students in 2002, and its 14th class graduated this May, with the BTC Institute serving as a major partner since its inception. The 15-year anniversary highlights the success the program has garnered over the years, with over 300 alumni successfully completing the program between 2002 and 2017.

Kevin Conroy, JD led the panel discussion

To celebrate and acknowledge the program’s 15-year anniversary, a panel discussion was held in March of this year on the University of Wisconsin – Madison campus at the Wisconsin Institute for Medical Research (WIMR).  A panel of alumni and faculty, led by Kevin Conroy, CEO of Exact Sciences, addressed the question: What are the future education needs of the biotechnology industry in Wisconsin?

Continue reading “The University of Wisconsin Master of Science in Biotechnology Program Celebrates Its 15-Year Anniversary”

On the Road with the Biotechnology Field Trips Program

BFT-a

The On the Road (OTR) BTC Institute Biotechnology Field Trips (BFT) program is rolling right along!  We are doing our best to brave the winter weather to take hands-on science activities all over the state of Wisconsin.

The BTC Institute BFT program served over 3,400 students last year, most of them here at the BTC in Fitchburg.  That said, each year the OTR part of the program is growing in order to serve schools that cannot travel here for various reasons, such as distance, bus costs and the need to minimize out-of-school time.

Continue reading “On the Road with the Biotechnology Field Trips Program”

Shining Light on a Superbug: Clostridium difficile

Antibiotic-resistant bacteria and their potential to cause epidemics with no viable treatment options have been in the news a lot. These “superbugs,” which have acquired genes giving them resistance to common and so-called “last resort” antibiotics, are a huge concern as effective treatment options dwindle. Less attention has been given to an infection that is not just impervious to antibiotics, but is actually enabled by them.

33553646_l

Clostridium difficile Infection (CDI) is one of the most common healthcare-associated infections and a significant global healthcare problem. Clostridium difficile (C. diff), a Gram-positive anaerobic bacterium, is the source of the infection. C. diff spores are very resilient to environmental stressors, such as pH, temperature and even antibiotics, and can be found pretty much everywhere around us, including on most of the food we eat. Ingesting the spores does not usually lead to infection inside the body without also being exposed to antibiotics.

Individuals taking antibiotics are 7-10 times more likely to acquire a CDI. Antibiotics disrupt the normal flora of the intestine, allowing C. diff to compete for resources and flourish. Once exposed to the anaerobic conditions of the human gut, these spores germinate into active cells that embed into the tissue lining the colon. The bacteria are then able to produce the toxins that can cause disease and result in severe damage, or even death.

Continue reading “Shining Light on a Superbug: Clostridium difficile”

Welcome to Your Biotechnology Field Trip at the BTC Institute!

BTCI provides our students an opportunity that they could never get in the classroom.
—Jim Geoffrey, Biology Teacher, Kaukauna High School

Kaukauna High School students arrive at the BTC for a biotechnology fieldtrip.
Kaukauna High School students arrive at the BTC for a biotechnology fieldtrip.

Your bus has arrived and parked in the circular driveway at the front of the BioPharmaceutical Technology Center on the Promega Corporation campus in Fitchburg, WI. Your BTC Institute hosts – and instructors – for your field trip are Barbara Bielec (K-12 Program Director) and Ryan Olson (Biotechnology Instructor). They’ll greet you in the Atrium and direct you to a conference room where you can leave coats and backpacks, and then to the lab you’ll be working in during your visit.

Here’s a taste of what happened next for students from Random Lake High School and Wonewoc High School on December 3rd, and from Kaukauna High School on December 4th.

Continue reading “Welcome to Your Biotechnology Field Trip at the BTC Institute!”