Curiosity and Collaboration: A PhD Journey

Concepcion Sanchez-Cid didn’t know she wanted to be a scientist when she was older. She grew up with a love of music and played the violin, but her curiosity and eagerness to learn drove her down the path for a career in biomedical research.

Hear more of Concepcion’s story:

As a Master’s student at the University of Granada, Concepcion studied biotechnology and landed an internship at the Promega Europe Training and Application Lab (PETAL) in France. She worked with the Applications Team to develop protocols for DNA and RNA extraction from soil. When she decided to pursue a PhD, she received a sponsorship from Promega and enrolled as a student at the University of Lyon while also remaining an employee at PETAL.

Concepcion says that the balance between both worlds—academia and industry—provide her with technical skills and a unique support network that has helped shape her PhD thesis work. “Working at a university and a company at the same time…you get very different feedback from people that are very specialized, and they really know what they’re doing, so at the end you integrate everything,” she says. “It’s one of the things I appreciate most about my PhD.”

Continue reading “Curiosity and Collaboration: A PhD Journey”

iGEM Stockholm: Blending Art and Synthetic Biology

On May 13, 2019, twenty-five meters below the streets of Stockholm in a retired nuclear reactor, Nerea Capon and her iGEM team unveiled an artistic fusion of creativity and synthetic biology. The Synthetic Biology Art Exhibition featured works by other iGEM teams and local artists, all presenting their unique reflections on the concepts of synthetic biology. The collection included synthetic skin grown by bacteria, performance art, and even a musical snail that spent the week crawling around a table full of plants.

“They were mind-blowing,” Nerea says a few weeks after the exhibition. “We let them have total freedom to interpret synthetic biology as they would love to, and it was really surprising.” Continue reading “iGEM Stockholm: Blending Art and Synthetic Biology”

Activating the Inflammasome: A New Tool Brings New Understanding

Innate immunity, the first line of immune defense, uses a system of host pattern recognition receptors (PRRs) to recognize signals of “danger” including invariant pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These signals in turn recruit and assemble protein complexes called inflammasomes, resulting in the activation of caspase-1, the processing and release of the pro-inflammatory cytokines IL-1ß and IL-18, and the induction of programmed, lytic cell death known as pyroptosis.

Innate immunity and the activity of the inflammasome are critical for successful immunity against a myriad of environmental pathogens. However dysregulation of inflammasome activity is associated with many inflammatory diseases including type 2 diabetes, obesity-induced asthma, and insulin resistance. Recently, aberrant NLRP3 inflammasome activity also has been associated with age-related macular degeneration and Alzheimer disease. Understanding the players and regulators involved in inflammasome activity and regulation may provide additional therapeutic targets for these diseases.

Currently inflammasome activation is monitored using antibody-based techniques such as Western blotting or ELISA’s to detect processed caspase-1 or processed IL-1ß. These techniques are tedious and are only indirect measures of caspase activity. Further, gaining information about kinetics—relating inflammasome assembly, caspase-1 activation and pyroptosis in time—is very difficult using these methods. O’Brien et al. describe a one-step, high-throughput method that enables the direct measurement of caspase-1 activity. The assay can be multiplexed with a fluorescent viability assay, providing information about the timing of cell death and caspase-1 activity from the same sample. Continue reading “Activating the Inflammasome: A New Tool Brings New Understanding”

Obesity: Can Simple Approaches Reduce Complex Risks?

Obesity Prevalance 2017
Prevalence of Self-Reported Obesity Among U.S. Adults by State and Territory, Behavioral Risk Factor Surveillance System (BRFSS) 2017. Prevalence estimates reflect BRFSS methodological changes started in 2011. These estimates should not be compared to prevalence estimates before 2011. Source: BRFSS, Centers for Disease Control and Prevention

The Obesity Epidemic

For over a decade, obesity has been called an “epidemic”, both in the popular and scientific literature. Traditionally, the term “epidemic” is associated with a highly contagious disease that carries with it a significant risk of mortality. A comprehensive review of observational studies (1) suggested that obesity did not fit this definition, despite the use of the term in a widely disseminated report by the World Health Organization in 2002.

Regardless of the etymological fine points, the worldwide prevalence of obesity and its associated health risks are clear. These risks include type 2 diabetes, hypertension, several cancers, gall bladder disease, coronary artery disease and stroke (2). Yet, the debate over obesity and options for reducing its risks has become increasingly polarized. As a result, some health researchers are advocating a “health at every size” (HAES) approach to address the social, cultural and lifestyle implications of obesity (2).

Continue reading “Obesity: Can Simple Approaches Reduce Complex Risks?”

Selecting the Right Colony: The Answer is There in Blue and White

Agar plate containing colonies important for research, blue and white.
Agar plate containing colonies important for research.

Ah, the wonders and frustrations of cloning. We’ve all been there. After careful planning, you have created the cloned plasmid containing your DNA sequence of interest, transformed it into bacterial cells and carefully spread those cells on a plate to grow. Now you stand at your bench gazing down at your master piece: a plate full of tiny bacterial colonies. Somewhere inside those cells is your DNA sequence, happily replicating with its plasmid host. But wait – logic tells you that not ALL of those colonies can contain your plasmid.  There must be hundreds of colonies. Which ones have your plasmid? You begin to panic. Visions of yourself old and grey and still screening colonies flash through your mind. At the next bench, your lab-mate is cheerfully selecting colonies to screen. Although there are hundreds of colonies on her plate as well, some are white and some are blue. She is only picking the white colonies. What does she know that you don’t?

Continue reading “Selecting the Right Colony: The Answer is There in Blue and White”

Lab Sustainability: Easy as 1-2-3

Sustainability is a bit of buzzword lately—for good reason—but knowing how to be more sustainable and actually putting sustainable practices in action are not the same thing. This may be one reason why scientists have been slow to adopt change in their laboratories. By sponsoring My Green Lab, we’re hoping to help spread the message that there are simple changes researchers can make in their labs to significantly impact sustainability.

Here are some easy ways to reduce energy, water and waste in your lab and start making your research more sustainable.

1. Energy

Compared to office buildings on campus, academic lab buildings consume 5 times more energy. To put that into perspective, labs typically consume 50% of the energy on a university campus despite occupying less than 30% of the space. Fortunately, reducing energy usage can be one of the easiest ways to make your lab more sustainable.

Continue reading “Lab Sustainability: Easy as 1-2-3”

B Cells, T Cells and Now X Cells?

The cause of type 1 diabetes (T1D) is not well understood. What is known is that in T1D, immune cells attack pancreatic islet cells that produce insulin. In addition, insulin is an autoantigen that activates T cells in diabetic persons.

A new discovery by Ahmed et al. could further T1D understanding. These findings are also setting B and T cell paradigms on their ear.

About B Cells and T Cells

Components of the B cell receptor.
Components of the B-cell receptor.Image by CNX OpenStax. Used with permission under Wikimedia Commons.

B cells (B lymphocytes) are part of the cellular immune response. They act by means of surface receptor molecules that are immunoglobulins. These B cell receptors are created by highly variable gene rearrangements that result in a huge variety of these surface immunoglobulin molecules. The beauty of B cell receptors (BCR) lies in the fact that, through random gene rearrangements comes a such large variety of B cell surface receptors, that any foreign antigen that makes its way into the body is recognized and snagged by a B cell receptor.

B cells then internalize, process and present these antigens to T cells. Continue reading “B Cells, T Cells and Now X Cells?”

Nothing Beets Locally Grown

A great way to purchase fresh fruits and veggies is by attending a farmer’s market. Farmer’s markets are community centerpieces. Shopping at markets helps support local agriculture and recirculates money back into the community. Many times, shoppers can find food that is pesticide-and herbicide-free. Since food is sourced from nearby, shopping at a market helps save the energy and petroleum that is used to ship food around the world. Plastic waste can also be prevented, just remember to bring your own reusable produce bags.

Continue reading “Nothing Beets Locally Grown”

PROTACs, PHOTACs and LYTACs: How to Target a Protein for Degradation

PROTACs for Targeted Protein Degradation
An illustration of PROTAC structure and the proteins it binds.

Targeting a single protein and making it disappear from the cell is quite the magic trick, and there are various molecular tools available for this task. You can use RNA interference, which prevents a protein from being made, inhibitors that bind the protein, rendering it unavailable for use or even gene editing tools like CRISPR that can remove it from the genome. But did you know that you can target an existing protein for destruction, using the cell’s own garbage disposal system to degrade the protein? All you need is a molecule that can connect your protein to one with a role in cellular protein degradation and your protein can be destroyed.

Continue reading “PROTACs, PHOTACs and LYTACs: How to Target a Protein for Degradation”

Lighting Up GPCR Research with Bioluminescent Tagging

G Protein-Coupled Receptors (GPCRs) are a very large, diverse family of transmembrane receptors in eukaryotes. These receptors detect molecules outside the cell and activate internal signaling pathways by coupling with G proteins. Once a GPCR is activated, β-arrestins translocate to the cell membrane and bind to the occupied receptor, uncoupling it from G proteins and promoting its internalization.

Reporter tags are useful for studying the dynamics of GPCRs and associated proteins, but large tags can disrupt the receptors’ native functioning, and often overexpression of the tagged protein is required to obtain sufficient signal. Here is one example of how researchers have used the small, bright NanoLuc® luciferase to overcome these common challenges and answer questions about GPCRs.

Continue reading “Lighting Up GPCR Research with Bioluminescent Tagging”