NanoLuc® Luciferase Powers More than Reporter Assays

Bright NanoLuc® Luciferase

What can you do with a small, super bright luciferase? Amazing things. We’ve highlighted many of the papers and new applications that NanoLuc® luciferase has enabled on this blog. While NanoLuc® luciferase was first introduced as a reporter enzyme to assess promoter activity, its capabilities have expanded far beyond a genetic reporter, creating bioluminescent tools used to study endogeneous protein dynamics, target engagement, protein degradation, immunodetection and more. So where did the NanoLuc luciferase come from and how does one enzyme power so many research capabilities? Read further for a primer on the various technologies and applications developed from this enzyme over the last 10 years.

Continue reading “NanoLuc® Luciferase Powers More than Reporter Assays”

Targeting IL-6: How A Drug That Helped a 6-Year-Old Beat Cancer Can Save COVID-19 Patients

In 2012, a 6-year-old girl named Emily Whitehead was battling acute lymphoblastic leukemia (ALL), one of the most common cancers in children. Her cancer was stubborn. After 16 months of chemotherapy, the cancer still would not go into remission. There was nothing else the doctors could do, and she was sent home. She was expected to survive only a few more months. Her parents would not give up and enrolled her into a clinical trial of a new immunotherapy treatment called chimeric antigen receptor (CAR) T cell therapy. She was the first pediatric patient in the program.

Doctors took T cells from Emily’s blood and reprogrammed them in a lab. They essentially sent her T cells to boot camp where they are trained to find cancer cells and destroy them. The reprogrammed T cells were then injected back into her body. A week into treatment, she started getting a fever, the first sign that the treatment was working and her reprogrammed T cells were fighting the cancer. But soon, she got very sick. All of the indicators suggested that she had cytokine release syndrome (CRS)—also known as the cytokine storm. This happens when cytokines are released in response to an infection but the process cannot be turned off. The cytokines continue to attract immune cells to the infection site, causing damage to the patient’s own cells and eventually resulting in acute respiratory distress syndrome (ARDS). (Learn more about the cytokine storm in this blog.)

Emily was soon on a ventilator. Tests showed that she had extremely high levels of one particular cytokine: interleukin-6 (IL-6). Desperate to keep her alive, her doctors gave her a known drug that specifically targets IL-6. The results were dramatic. After one single dose, her fever subsided within hours, and she was taken off the ventilator. On May 2nd, 2012, she woke up from an induced coma—it was her 7th birthday. Her doctors said they have never seen a patient that sick get better that quickly.

The drug that saved her life was tocilizumab.

Continue reading “Targeting IL-6: How A Drug That Helped a 6-Year-Old Beat Cancer Can Save COVID-19 Patients”

Adapting Our Projects, Our Experiments, and Ourselves to Support COVID-19 Response

The COVID-19 pandemic has affected virtually everyone’s lives and business, and Promega is no exception. If you’re a frequent reader of Promega Connections, you have probably noticed that many of our recent blog posts have mentioned the novel coronavirus.

Madison Scientific Applications Team working on projects before physical distancing.

As Applications Scientists at Promega, we have adapted our work to enable support of our Promega colleagues and their customers as they respond to the pandemic. Like other groups in the company, we have ramped up our efforts. Our team typically has a broad focus on a variety of projects from across market segments of the company. During the second week of March, we switched to completely focus on virus-related experiments. Everyone on our team was in the lab collaborating on a large project to determine which kits could be used to purify viral nucleic acid from universal transport medium for virus (UTM®) and sputum, knowing that customers would be using any kit that they had on hand to do testing quickly. We completed testing in two days and data analysis and write-up within another couple of days.

In the last six weeks, we have worked on over 30 projects and completed almost 20 of them. In some cases, we identified, resourced, and began projects in the same day. In other cases, we completed projects within a day or two of receiving the request. You can find some of our data, presented as “Viral RNA Extraction Application Notes”, here.

Many projects originated from direct questions from global branches, Technical Services, and other internal colleagues on behalf of their customers. Some projects resulted from a need we identified, such as testing alternative storage methods for swab transport due to shortage of UTM®. Projects ranged from testing purification kits with relevant sample types, to comparing amplification reagents, and participating in work on forthcoming virus-related products.

Continue reading “Adapting Our Projects, Our Experiments, and Ourselves to Support COVID-19 Response”

Getting a PhD in Sweatpants: Guest Blog by Dr. Susanna Harris

Today’s blog is guest-written by Susanna Harris, who recently defended her PhD thesis at the University of North Carolina in Chapel Hill.


I just defended my PhD. Nearly six years of blood, sweat, and tears, most of which were cleaned up with Kimwipes while sitting at my desk in a laboratory facing out towards the UNC Chapel Hill football field. Nearly six years of work, all summed up in a handful of slides. Nearly six years of work, explained to my friends, family, and colleagues – a moment I had dreamed of since the fall of 2014.

What I hadn’t dreamed of? That I would be sitting at my small desk in the corner of my room, with no present audience aside from my snoring dogs. That there would be no dinner celebration that carried into a night of fun along Franklin Street. That, unseen by the viewers of my defense, I would be wearing sweatpants as my name changed from Ms. to Dr. Harris.

Pictured: The audience for Susanna’s thesis defense.

Why did I wear sweatpants when I could have worn literally anything in my closet? Because I think it’s hilarious. I believe this situation will end and we will walk away with memories and lessons learned from an extremely difficult time in the history of the world. I want to walk away with one more ridiculous story to add to a long list of “What even was that?” tales from grad school.

Working towards a PhD is hard at any time; let’s not pretend this pandemic isn’t making things even worse. I was fortunate in many ways that my advisor had already moved our laboratory to a new state in 2019, allowing me to adjust to meeting through webcams and working from home before the pandemic changed the lives of all North Carolinians. This has given me a unique perspective to tease out which problems come from distance working and which are the result of Safer-At-Home orders. Based on my experiences, here are a few tips, tricks, and words of warning.

Continue reading “Getting a PhD in Sweatpants: Guest Blog by Dr. Susanna Harris”

Just Keep Swimming: How the Wisdom of a Blue Cartoon Fish Can Inspire Us Amid COVID-19

Today’s blog is written by guest blogger Karen Stakun, Global Brand Manager at Promega.

Wise words from a forgetful blue fish are uniting Promega employees during these trying days. Initiated by our VP of Operations as a rallying call to employees and reinforced through a kind gesture from the Hollywood writer and director who dreamed up the fish, I invite you to join Promega as we “Just Keep Swimming.”

Those words were uttered by Dory, a blue tang with short-term memory loss, in the 2003 animated movie Finding Nemo. Now a classic, it tells the story of Marlin, an overprotective clownfish, who searches the ocean for his missing son Nemo. Dory is his sometimes-unwelcome companion. Desperate to find his son, Marlin grows exhausted and begins to feel defeated, but Dory will not let him give up. Her motivation is simple yet potent. “Just Keep Swimming.”

Setting the Scene

As COVID-19 was emerging in China, Promega began scaling up manufacturing in January to meet the growing global need for testing products. As epidemic became pandemic, and demand quickly became unprecedented, we moved swiftly to increase capacity and add more shifts at our Madison manufacturing facilities, all while ensuring the safety of our employees.

All of this takes dedicated people, especially those on our operations team, working long hours in an atmosphere of global uncertainty. Dedication is in abundance at Promega, as every employee feels a deep commitment to humanity’s struggle against this disease. However, Chuck York, our VP of Operations, says he began seeing the team struggle with the never-ending increases in demand. Despite record product totals, it could be demoralizing for a group that prides itself on always being able to deliver what customers need.

That’s when Chuck recalled one of his family’s favorite movies. “I love the never-give-up aspect of Finding Nemo and in particular the net scene.” Toward the end of the movie, Dory and several other fish find themselves caught in a fishing net. With Nemo’s help, the fish realize they can turn Dory’s mantra into action. They keep swimming together in the same direction and break free of the net.   

“I wanted the team to focus on what we could control, doing all we can each day to keep product flowing. And we were and are doing an outstanding job of that. I also hoped to lighten the mood and bring a smile to peoples’ faces. Our ‘net’ is the ever surging COVID-19 demand, but eventually we will overcome if we just keep swimming.”

Continue reading “Just Keep Swimming: How the Wisdom of a Blue Cartoon Fish Can Inspire Us Amid COVID-19”

Earth Day 2020: Celebrating Nature During A Pandemic

Since Wisconsin issued a Safer at Home order on March 25, I have been leaving my home exactly once a week. Every Tuesday morning, I drive to a small town outside of Madison to spend an hour monitoring a nest of bald eagles. I’ve been volunteering for Bald Eagle Nest Watch since the beginning of the year, and three weeks ago I got my first look at two newly hatched eaglets. Over the past few weeks, I’ve found that my time at the eagle nest is a wonderful relief from the stress of the pandemic and the confinement to my home.

I’m not the only person escaping to natural spaces for relief during the widespread lockdowns in response to COVID-19. Parks have been filled with people taking daily walks and enjoying fresh air when there are few places indoors they can safely go. Besides encouraging many people to visit local parks and forests, the COVID-19 pandemic has revealed many complexities of humanity’s relationship with the environment. The severe drop in human activities has resulted in decreased air pollution, as well as fascinating changes in wildlife behavior. However, the pandemic is also an important reminder that the environmental impact of human activity has drastic consequences for global risk of infectious disease. This Earth Day, it’s the perfect time to pause and examine how the COVID-19 pandemic and the natural world are influencing each other for better and for worse.

Continue reading “Earth Day 2020: Celebrating Nature During A Pandemic”

RT-qPCR and qPCR Assays—Detecting Viruses and Beyond

We have all been hearing a lot about RT-PCR, rRT-PCR and RT-qPCR lately, and for good reason. Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR) is the technique used in by the Center for Disease Control (CDC) to test for COVID-19. Real-time RT-PCR, or quantitative RT-PCR (RT-qPCR)*, is a specialized PCR technique that visualizes the amplification of the target sequence as it happens (in real-time) and allows you to measure the amount of starting target material in your reaction. You can read more about the basics of this technique, and watch a webinar here. For more about RT-PCR for COVID-19 testing, read this blog.

Both qPCR and RT-qPCR are powerful tools for scientists to have at their disposal. These fundamental techniques are used to study biological processes in a wide range of areas. Over the decades, Promega has supported researchers with RT-qPCR and qPCR reagents and systems to study everything from diseases like COVID-19 and cancer to viruses in elephants and the circadian rhythm of krill.  

Continue reading “RT-qPCR and qPCR Assays—Detecting Viruses and Beyond”

The Cytokine Storm: Why Some COVID-19 Cases Are More Severe

coronavirus

Blog Updated on June 16, 2020

One of the biggest outstanding questions of the COVID-19 pandemic is why symptoms vary so much among patients. Some patients have no symptoms at all; some symptoms are mild, while others are extremely severe. Among the more severe cases, a common pattern of disease progression happens like this: A patient gets through the first week with some signs of recovery—then suddenly they rapidly deteriorate. In some cases, they go from needing just a tiny bit of oxygen to requiring a ventilator within 24 hours.

This pattern, often seen in young and otherwise healthy patients, has baffled doctors. What causes these patients to suddenly crash? Research now suggests that the patient’s own immune system may be to blame. It’s called cytokine release syndrome—also known as the “cytokine storm”.

Continue reading “The Cytokine Storm: Why Some COVID-19 Cases Are More Severe”

From Live Cells to Lysates: Adapting NanoBiT to a Biochemical Assay Format

The ability to target protein interactions with low solubility or weak binding affinities can present a significant challenge when it comes to drug screening. The beauty of these types of challenges we often face in the lab is that finding solutions to these problems doesn’t necessarily require brand new tools. Sometimes we already have the right tools in our arsenal and, with just a little creativity and collaboration, they can be adapted to address the challenge at hand.

In the following video, Dr. Mohamed (Soly) Ismail, a Postdoctoral Fellow at the Downward Lab of the Francis Crick Institute, presents the perfect example of this with his novel approach to the NanoBiT® Protein:Protein Interaction Assay. Through a collaboration with Promega R&D Scientists, Dr. Ismail has translated the assay into a cell-free, biochemical format, termed the NanoBiT Biochemical Assay (NBBA).

Continue reading “From Live Cells to Lysates: Adapting NanoBiT to a Biochemical Assay Format”

Flexible Automated Purification Solutions For Dealing With Urgent Needs

Implementing a new high-throughput (HT) nucleic acid purification workflow or scaling up an existing workflow presents many unique challenges. To be successful, the chemistry and liquid handler must be perfectly integrated to fit your lab’s specific needs. This involves configuring the instrument deck, optimizing the assay chemistry, and programming the instrument.

When you’re facing a sudden spike in sample throughput demand combined with unprecedented urgency, those challenges can often become overwhelming. Even in times of crisis, Promega scientists are prepared to support labs facing challenges with HT workflows, regardless of your instrumentation platform.

Continue reading “Flexible Automated Purification Solutions For Dealing With Urgent Needs”