Meeting Customer Needs in Response to Market Dynamics: Responding to the Coronavirus Pandemic

Today’s blog is written by Chuck York, VP of Manufacturing Operations at Promega.

Coronavirus SARS-2-CoV continues to fuel unprecedented demand for COVID-19 related products. Once a term relegated to virology research labs, “coronavirus” is now a household term and a global crisis that has upended lives, disrupted entire economies and shaken our sense of normalcy.

Clinicians, researchers, government officials and the general public are understandably concerned about the availability of reagents for coronavirus testing. At Promega, we are hearing the needs and concerns of our scientific colleagues and partners, and we are doing all that we can to help alleviate them.

At Promega, we are hearing the needs and concerns of our scientific colleagues and partners, and we are doing all that we can to help alleviate them.

As a global company with thousands of products, we have been meeting customer demand in response to market dynamics for decades. Our long-term approach has served customers well. Our efforts to provide support for the COVID-19 response began in early January, with our work with our colleagues and customers in China. We are applying what we’ve learned to propel us forward in the most efficient way now.  

We continue to increase production of all COVID-19 related reagents and instruments due to an unprecedented increase in global demand. Production lines that were running one shift 5 days a week are now operating 3 shifts seven days a week, and we continue to take measures to increase our manufacturing capacity.

Continue reading “Meeting Customer Needs in Response to Market Dynamics: Responding to the Coronavirus Pandemic”

RNA Extraction for Clinical Testing—Do Not Try this with Home-brew

This blog was written with much guidance from Jennifer Romanin, Senior Director IVD Operations and Global Service and Support, and Ron Wheeler, Senior Director, Quality Assurance and Regulatory Affairs at Promega.

A Trip Down Memory Lane

Back in the day when we all walked two miles uphill in the snow to get to our laboratories, RNA and DNA extraction were home-brew experiences. You made your own buffers, prepped your own columns and spent hours lysing cells, centrifuging samples, and collecting that fluorescing, ethidium bromide-stained band of RNA in the dark room from a tube suspended over a UV box. Just like master beer brewers tweak their protocols to produce better brews, you could tweak your methodology and become a “master isolater” of RNA. You might get mostly consistent results, but there was no guarantee that your protocol would work as well in the hands of a novice.

Enter the biotechnology companies with RNA and DNA isolation kits—kits and columns manufactured under highly controlled conditions delivering higher quality and reproducibility than your home-brew method. These systems have enabled us to design ever more sensitive downstream assays–assays that rely on high-quality input DNA and RNA, like RT-qPCR assays that can detect the presence of a specific RNA molecule on a swab containing only a few hundred cells. With these assays, contaminants from a home-brew isolation could result in false positives or false negatives or simply confused results. Reagents manufactured with pre-approved standard protocols in a highly controlled environment are critical for ultra sensitive tests and assays like the ones used to detect SARS-CoV-2 (the virus that causes COVID-19).

The Science of Manufacturing Tools for Scientists

There are several criteria that must be met if you are producing systems that will be sent to different laboratories, used by different people with variable skill sets, yet yield results that can be compared from lab to lab.

Continue reading “RNA Extraction for Clinical Testing—Do Not Try this with Home-brew”

Which Came First: The Virus or the Host?

They existed 3.5 billion years before humans evolved on Earth. They’re neither dead nor alive. Their genetic material is embedded in our own DNA, constituting close to 10% of the human genome. They can attack most forms of life on our planet, from bacteria to plants to animals. And yet, if it wasn’t for them, humans might never have existed.

3D structure of a coronavirus, viral evolution
A depiction of the shape of coronavirus as well as the cross-sectional view. The image shows the major elements including glycoproteins, viral envelope and helical RNA. This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

No, that’s not the blurb for a new Hollywood blockbuster, although recent developments have proven, once again, that truth is decidedly more bizarre than fiction. Now that “coronavirus” has become a household word, the level of interest in all things virus-related is growing at an unprecedented rate. At the time of writing, coronavirus and COVID-19 topics dominated search traffic on Google, as well as trends on social media. A recent FAQ on this blog addresses many of the questions we hear on these topics.

Continue reading “Which Came First: The Virus or the Host?”

Testing for COVID-19: How it Works

Depending on your viewpoint, source of information and tolerance for risk, this can be a frightening time for persons all over the planet. The level of disruption to daily life that we’re all experiencing due to COVID-19 is unprecedented.

We are all either not working, working from home and away from our normal offices, or in some cases working many more hours to cover for sick coworkers and caring for SARS-CoV-2-infected persons.

But there is good news if you find that information is power. We hope that some information about the testing being used in the US for this novel coronavirus might be fuel for you, empowering in terms of information.

What is the Name of the Virus, and the Disease?
Since this is a global pandemic, the World Health Organization was instrumental in naming the virus and disease. From this web page: the disease is called COVID-19.

The coronavirus responsible for this disease is SARS-CoV-2.

Continue reading “Testing for COVID-19: How it Works”

Conferences in the time of COVID-19

Travel and event restrictions related to the COVID-19 pandemic have caused many scientific conferences to be canceled, delayed or adapted into virtual events. These conferences include the Society of Toxicology (SOT), American Association of Cancer Researchers (AACR), Experimental Biology (EB) and the BioPharmaceutical Emerging Best Practices Association (BEBPA) Bioassay Conference, among many others. For the most up-to-date information, we recommend checking with the hosts of each conference.

These cancellations have disrupted many scientists’ plans to present research, engage with potential collaborators and interact with vendors. At Promega, we’re sensitive to the lost opportunities and are currently exploring potential ways to create these experiences despite so many conferences being canceled.

“We want people to be able to talk directly with us and have the same warm feeling as a close conversation at a conference, but without being face to face,” says Allison Suchon, Promega Tradeshow Manager. “We’re looking at different options to have that same conference feeling but without the show going on around us.”

To make the most of our time while we build solutions, we asked Promega scientists for tips on staying connected and informed when you can’t go to conferences. Here are some ideas we gathered.

Continue reading “Conferences in the time of COVID-19”

Giant Rodent, Lowered Cancer Rates: What Genetic Analysis Reveals about the Capybara and Cancer

Do you find the thought of a giant rodent off-putting? Do your thoughts go to huge rats running amuck in dark allies, threatening unsuspecting passers by?

I personally hold rodents in low esteem. Rats, mice…who needs them? With the exception of cavies. I spent countless hours as a child playing with guinea pigs. We had as many as 16 of these little rodents at one time (the males are very capable of chewing or climbing out of cardboard boxes to reach a female in the next box). The baby guinea pigs were very cute and the adults had quite pronounced personalities, and a lot of attitude.

It was this history with guinea pigs that made me interested in learning more about the largest rodent in the world, the South American capybara (Hydrochoerus hydrochaeris). These family-oriented herbivores are found in savannas and forested areas, living in groups of as many as 100 members. They are excellent swimmers and can remain underwater for as long as 5 minutes. In fact, capybara mate only in the water. (Perhaps it’s not surprising then that the South American alligator, the caiman, is one of the capybara’s greatest predators.)

Photos of an adult male capybara.
A male capybara, with a scent gland (called a morillo) on his head. Photo by: Charles J Sharp – Own work, from Sharp Photography, sharpphotography, CC BY-SA 4.0.

With their squared-off nose and lack of tail, capybaras actually resemble guinea pigs. However, these oversized cavies weigh as much as 40 pounds. and can reach 24” at the shoulder, the size of an average standard poodle. Guinea pigs, on the other hand, weigh in at 2–3 pounds, and are 3–4” tall.

Their proportions make capybaras 60 times more massive than their closest relatives, rock cavies (Kerodon sp.) and 2,000 times more massive than the common mouse (Mus musculus). This tremendous size difference is why Herrera-Álvarez et al. took a closer look at the capybara, studying its propensity to develop cancer and other tradeoffs that would seem to coincide with its exceptional size.

Continue reading “Giant Rodent, Lowered Cancer Rates: What Genetic Analysis Reveals about the Capybara and Cancer”

The Art of Being a Field Scientist

Today’s article is written by guest blogger Vince Debes, this year’s winner of the Promega Art Contest for Creative Scientists. He will be starting a Master of Science program in Geological Sciences in the School of Earth and Space Exploration at Arizona State University this fall.

Grand Tetons at night

It’s incredible how seemingly insignificant actions can lead to major events years down the road. When my partner and I were testing out our new camera shutter remotes in the Grand Tetons on the way to do field work in Yellowstone, I never imagined an image we captured would lead to a grand prize in the Promega Art Contest for Creative Scientists. The four-minute-long exposure was taken at midnight with a full moon and shows the ghostly, almost imperceptible, movements of Colter Bay marina vessels against a backdrop of trailing stars and the stolid Tetons.

Continue reading “The Art of Being a Field Scientist”

Building a Collaborative Research Network to Address a Rare Disease

Early June 2016

Chris had extreme leg pain off and on for about a month. Pain that came and went, creeping in slowly but sometimes with extreme intensity. Based on x-rays an orthopedist diagnosed a torn hamstring that was on the mend. We were sent home to rest and ice his muscles.

One Sunday Chris played in the pool for 5 hours straight and didn’t wince once. The following week he was fine so he went to soccer practice on Wednesday and swim team practice the next day. At 11:30 that night he woke up screaming in pain. Same leg. Same spot. Back again.

Late June 2016

We were on vacation in Greece. The pain started again, severe and intense and scary, so bad he couldn’t sleep lying down in a bed.  Desperate, we ended up in a Greek hospital… the local pediatrician was wonderful and recommended we fly home and see an orthopedic doctor as soon as possible…a terrifying flight home: No answers and a pit in our stomachs. Chris was in a wheelchair.

July 2016

We finally got the orthopedist to order the MRI. The MRI results were what every parent fears: “leukemia or lymphoma” and a referral to an oncologist.  After many invasive tests, the oncologist said it was probably not cancer.  We felt such relief, but we were left with no answers for all his pain. We moved on to infectious disease.

August 2016

The infectious disease specialist said they could not culture anything so they didn’t believe that Chris had an infection. Again, incomplete answers.  We were then passed off to rheumatology.  The frustration of not having any answers and our child still in pain was heart-breaking, isolating, and terrifying.

Based on the bone biopsy and MRIs the rheumatologists finally gave Chris a diagnosis: Chronic Recurrent Multifocal Osteomyelitis (CRMO often pronounced “chromo” for short).

The good news: it was not cancer; the bad news: very little is known about CRMO because it is a rare disease.

Continue reading “Building a Collaborative Research Network to Address a Rare Disease”

A Quick Guide To Finding That Next Step After A Post-Doc

On February 13, 2020, a group of post-docs from the University of Wisconsin – Madison had the opportunity to spend a day at the Promega headquarters in Fitchburg, WI. Throughout the day, the group heard from a list of speakers including Tom Livelli, VP of Life Sciences, and representatives from Technical Services, Sales, R&D and Marketing. The day concluded with a tour of the Feynman Manufacturing Center, where attendees saw production and packing lines, as well as training and QC labs.

Promega employees and UW Post-Docs having lunch

“It’s always encouraging as a scientist to hear about how each person is different and how they’ve had different twists and turns,” says Alexa Heaton, a post-doc studying immunotherapy interactions in mice. “It’s great to hear from such a range of people and the different job types I could consider.”

To recap the day, we’ve captured a few of the biggest takeaways below.

Continue reading “A Quick Guide To Finding That Next Step After A Post-Doc”