7 Tips for Creating an Individual Development Plan

Today’s guest blog is written by Jayme Miller, a Human Resources Generalist at Promega, who has some tips for creating an IDP that will help you achieve your goals. Individual Development Plans (IDPs) are common career development tools used in industry, and there has been a push for PhD programs to incorporate career development tools such as IDPs. By creating an IDP, employees and students both have a formal way to communicate their career goals and help them stay on track.

Employee development, the different paths you can take, arrows pointing

There is one question I am frequently asked by candidates during the interview process—“Is employee development a focus at this organization?” Employees frequently tell me they are looking for employers and opportunities where they will have the ability to learn, grow and develop. While that all sounds great, it is important to have an upfront and transparent discussion about roles, responsibilities and expectations when it comes to employee development.

Many organizations indicate that they have an employee development “program” at their organization, but when they begin talking about their program, they describe their performance management process. Often, they will describe how employees are evaluated and provided feedback from their manager. Feedback is a key component for employee development, but it is up to the employee to use that feedback to create action items that will give them the opportunity to learn and grow.  

Often employees believe that employee development is something provided by companies to employees, that it is something that employers make happen for employees. Good organizations will offer continuous learning opportunities and a feedback culture that allows employees to learn and grow. However, no employee development program will work for an employee who is not fully engaged in their own development and does not take ownership over the process. It is ultimately the employee’s responsibility to ensure they are actively taking the steps to develop within their role and within their organization.  

Continue reading “7 Tips for Creating an Individual Development Plan”

Tips for Attendees: Making the Most of a Virtual Conference

Today’s blog was written by guest bloggers Tara Luther, Marketing Specialist Genetic Identity, and Allison Suchon, Manager of Tradeshows and Events at Promega.

2020 has been a year of changes for all of us. We’ve learned how to keep in touch while physically distancing. We’ve learned how to work from home with furry coworkers who encourage us to break from the traditional 9–5 routine. We’ve learned how to make changes to our labs to stay safe and productive.

For many of us, this will also be the first time that we attend a virtual conference. While it’s easy to focus on what we’ll be missing by not gathering together, there are advantages to moving to the virtual space. By making the most out of your virtual experience, you’ll be able to walk away with valuable insights, a robust network, and insights that you can use in your own lab.

To help, we’ve put together a list of tips that will help you maximize your experience at any virtual conferences you attend.

Continue reading “Tips for Attendees: Making the Most of a Virtual Conference”

Social Distancing: Taking a Lesson from Creatures Big and Small

For many of us, the current SARS-CoV-2 pandemic means working from home. For many, working from home means being away from human companionship that’s normally part of our work lives. While my four-legged office mates are quiet and do not require meetings, they are no substitute for human coworkers.

How about you? In our socially distanced world, do you find strength in the knowledge that others are also self-isolating to stay healthy?

What if I told you that numerous animal species, lobsters to mongoose, ants to mandrills, all practice social distancing to avoid infectious agents? Here are a few examples.

Image of banded mongoose family group.
Banded mongoose family group.
Continue reading “Social Distancing: Taking a Lesson from Creatures Big and Small”

Celebrating the Work of Women Scientists on the 100th Anniversary of Rosalind Franklin’s Birth

Photo 51 is the now-famous X-ray diffraction picture that allowed Watson and Crick to crystalize centuries work of scientific study (from Mendel to Chargaff) into a viable structural model that explained how DNA could serve as the material of the gene. The photo was painstakingly produced by Dr. Rosalind Franklin, a contemporary of Watson and Crick. Although she and her colleague R.G. Gosling did publish their work in the same issue of Nature as the Watson and Crick paper (1,2), their work did not receive the same public accolades of that of Watson and Crick.

Applications Scientists help partners and customers apply existing technology to new questions. Read more about their work.

Women scientists have been contributing to our understanding of the world around us throughout history. On this 100th anniversary of Dr. Rosalind Franklin’s birth, we want to take a little time to recognize the work that women scientists are doing at Promega.

Continue reading “Celebrating the Work of Women Scientists on the 100th Anniversary of Rosalind Franklin’s Birth”

New Human Pluripotent Stem Cell-Derived Model For SARS-CoV-2 Research

influenza viruses

Months into the COVID-19 pandemic, we still have limited knowledge of the SARS-CoV-2 virus, and no effective treatment or vaccine. A major obstacle for scientists trying to understand the SARS-CoV-2 virus is the lack of appropriate cell models. Most of the studies published so far are based on cancer cell lines or animal models that have been engineered to express the human SARS viral entry receptor—ACE2. However, there are a many limitations to using these as models for studying human virus infection:

Continue reading “New Human Pluripotent Stem Cell-Derived Model For SARS-CoV-2 Research”

Working Through Change: Quality Assurance Insight on Change Orders and Life

Today’s blog is written by guest blogger, Erin Schuster, Quality Specialist at Promega.


Change is not easy. It can be challenging and even frustrating at times. Yet, the outcome of change can be incredibly beneficial and rewarding. As a result of the COVID-19 pandemic, many of us are finding ourselves in out-of-the-norm situations and circumstances. Change may be exactly what we need in order to adapt and move forward.

Erin works from home during the coronavirus crisis.

As a quality assurance specialist, I’m very familiar with the processes that can be associated with change. In order to make changes related to the design, manufacture or testing of medical devices and related products, an organization must have clearly defined expectations and instructions within Standard Operating Procedures. Procedures are a key component of the quality management system. Not only do they communicate best practices, but they’re required for compliance to applicable regulations and standards. These procedures, regulations, and standards help ensure products are safe, effective and of high quality.

Unlike changes to medical devices, the process to make life changes does not have a standard operating procedure. Best practices may vary from person to person. There are no regulations or standards to follow. Left to our own devices, we may procrastinate and never quite get around to making the change. Or if unsure of how to even begin, we may feel anxious and overwhelmed, giving up before even starting. I have experienced both scenarios and know I will again.

I am a quality assurance specialist, and I am also a human being. I have made many changes to myself and aspects of my personal life, as well as having supported many change orders and product changes throughout my career. Reflecting on these experiences, I realize there are universal themes within the change control process and change orders that can be extended to any kind of change.

Continue reading “Working Through Change: Quality Assurance Insight on Change Orders and Life”

Connecting and Collaborating: How Scientists Across the Globe are Supporting Each Other During The COVID-19 Pandemic

Many research labs around the world have temporarily closed their doors in response to the COVID-19 pandemic, while others are experiencing unprecedented need for reagents to perform viral testing. This urgency has led many scientists to make new connections and build creative, collaborative solutions.

“In labs that are still open for testing or other purposes, there’s certainly heightened anxiety,” says Tony Vanden Bush, Client Support Specialist. “I feel that right now, I need to help them deal with that stress however possible.”

Last week, Tony was contacted by a lab at the University of Minnesota that was preparing to serve as a secondary COVID-19 testing facility for a nearby hospital lab. The two labs needed to process up to 6,000 samples per day, and the university lab was far short of that capacity.

Continue reading “Connecting and Collaborating: How Scientists Across the Globe are Supporting Each Other During The COVID-19 Pandemic”

Emergency Use Authorization: The What, the Why and the How

This blog is written by guest blogger, Heather Tomlinson, former Director of Clinical Diagnostics at Promega.

Finding safe and effective treatments for human diseases takes time.  Medication and diagnostic tests can take decades to discover, develop and prove safe and effective.  In the United States, the FDA stands as the gold-standard gatekeeper to ensure that treatments and tests are reliable and safe. The time we wait in review and clearance means less risk of ineffective or unsafe treatments.

And yet, in a pandemic, we are behind before we even start the race to develop diagnostic tests, so critical for understanding how an infectious disease is spreading. That is when processes like the FDA’s fast track of Emergency Use Authorization (EUA) are critical. Such authorization allows scientists and clinicians to be nimble and provide the best possible test protocol as quickly as possible, with the understanding that these protocols will continue to be evaluated and improved as new information becomes available. The EUA focuses resources and accelerates reviews that keep science at the fore and gets us our best chance at staying safe and healing.

The Maxwell 48 RSC Instrument and the Maxwell RSC Total Viral Nucleic Acid Isolation Kit are now listed as options within the CDC EUA protocol.

For scientists working around the clock, the FDA’s EUA process is ready to review and respond. Getting an EUA  gives clinical labs a very specific and tested resource to guide them to the tools and tests to use in a crisis.

Typically the Centers for Disease Control (CDC) will develop the first test or protocol that receives FDA EUA in response to a crisis like a pandemic.  For COVID-19 the CDC 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic Panel received FDA EUA clearance in early February. This is the test protocol used by the public health labs that work with the CDC and test manufacturers around the world.

Throughout a crisis such as the current pandemic, scientists continually work to improve the testing protocols and add options to the EUA protocols. This enables more flexibility in the test protocols. Promega is fortunate to play a part of the CDC EUA equation for diagnostic testing. Our GoTaq® Probe 1-Step PRT-qPCR System is one of a few approved options for master mixes in the  CDC qPCR diagnostic test,  and now our medium-throughput Maxwell 48 Instrument and Maxwell Viral Total Nucleic Acid Purification Kit  were added to the CDC protocol as an option for the RNA isolation step as well. These additions to the CDC EUA means that laboratories have more resources at their disposal for the diagnostic testing which is so critical to effective pandemic response.

The Emergency Use Authorization provides the FDA guidance to strengthen our nation’s public health during emergencies, such as the current COVID-19 pandemic. The EUA allows continual improvement of an authorized protocol through the collaborative efforts scientists in all academia, government and industry to identify and qualify the most reliable technologies and systems, giving labs more flexibility as new products are added as options.

Dr. Tomlinson was the Director for the Global Clinical Diagnostics Strategic Business Unit at Promega Corporation bringing over 15 years of experience in clinical diagnostic test development. She was responsible for leading the team that drives strategy in the clinical market for Promega. Her background was in infectious disease diagnostic testing, with a focus on HIV drug resistance and evolution. Her last work focused on oncology companion diagnostic test development.  Heather was an accomplished international presenter, delivering conference presentations in the United States, Europe, Asia, and Africa. Heather passed away in 2023.

Related Posts

Small Changes With Large Consequences: The Role of Genetic Variance in Disease Development

Structure of Human Ferrochelatase
Human Ferrochelatase 2 angstrom crystal structure. Generated from 1HRK (RCSB PDB) using Pymol. Copyright: Sarah Wilson / CC BY-SA

Understanding how disease states arise from genetic variants is important for understanding disease resistance and progression. What can complicate our understanding of disease development is when two people have the same genetic variant, but only one has the disease. To investigate what might be happening with ferrochelatase (FECH) variant alleles that result in erythropoietic protoporphyria (EPP), scientists used next-generation sequencing (NGS) along with RNA analysis and DNA methylation testing to assess the FECH locus in 72 individuals from 24 unrelated families with EPP.

What is FECH and its relationship to EPP?

FECH is the gene for ferrochelatase, the last enzyme in the pathway that synthesizes heme. The inherited metabolic disorder, EPP, is caused when the activity of FECH is reduced to less than a third of normal levels thus, increasing the levels of protoporphyrin (PPIX) without metal in erythrocytes. The consequences of the low-metal PPIX include severe phototoxic skin reactions and hepatic injury due to PPIX accumulation in the liver.

How does FECH expression affect EPP?

The EPP disease state is not simply the lack of two functional FECH genes. Disease occurs with a hypomorphic allele, mutations in FECH that reduce its function, in trans to a null FECH allele. Researchers focused on three common variants called the GTC haplotype that are associated with expression quantitative trait loci (eQTL) that reduce FECH activity. Interestingly, these three variants have been found in trans, but researchers wanted to learn if there were individuals who were homozygous for the GTC allele and how EPP manifested for them.

Continue reading “Small Changes With Large Consequences: The Role of Genetic Variance in Disease Development”

Antibodies, Immunity and Vaccines: A Short Primer on the Adaptive Immune Response

MERS-CoV credit: NIAID

Our skin, respiratory system and gastrointestinal tract are continually bombarded by environmental challenges from potential pathogens like SARS-CoV-2. Yet, these exposures do not often cause illness because our immune system protects us. The human immune system is complex. It has both rapid, non-specific responses to injury and disease as well as long-term, pathogen-specific responses. Understanding how the immune response works helps us understand how some pathogens get past it and how to stop that from happening. It also provides key information to help us develop safe and effective vaccines.

The immune response involves two complementary pathways: Innate Immunity and Adaptive Immunity. Innate immunity is non-specific, rapid and occurs quickly after an injury or infection. As a result of the innate immune response, cytokines (small signaling molecules) are secreted to recruit immune cells to an injury or infection site.  Innate immunity does not develop “memory” of an antigen or confer long-term immunity.

The immune response involves to complementary pathways: Innate Immunity and Adaptive Immunity.

Unlike innate immunity, adaptive immunity is both antigen-dependent and antigen-specific, meaning that adaptive immune response requires the presence of a triggering antigen—something like a spike protein on the surface of a virus. The adaptive immune response is also specific to the antigen that triggers the response. The adaptive immune response takes longer to develop, but it has the capacity for memory in the form of memory B and T cells. This memory is what enables a fast, specific immune response (immunity) upon subsequent exposure to the antigen.

Continue reading “Antibodies, Immunity and Vaccines: A Short Primer on the Adaptive Immune Response”