XpressAmp™ Direct Amplification: Simplified and Accelerated Time to qPCR Results

As the SARS‐CoV‐2 pandemic continues to rage across the United States and around the globe, the demand for COVID‐19 testing is increasing. The vast majority of the COVID-19 assays use RT‐qPCR to detect the viral RNA in patient samples such as nasopharyngeal swabs, which are collected and stored in viral or universal transport media (VTM/UTM). The general workflow for these COVID‐19 assays can be broken down as follows:

  1. Collect and store patient samples
  2. Ship samples to testing laboratory
  3. Extract RNA from samples
  4. Amplify and analyze samples

While many companies who manufacture the products that are used in these steps have been able to adapt and significantly increase their production capacities, there are still gaps between the supply of these products and the global test demand. Both the sample collection and storage step and the RNA extraction/purification step have a tendency to bottleneck and experience supply constraints. One way to address these bottlenecks and expand production capacity for these in‐demand products is to evaluate the viability of skipping a step in the workflow, without hindering the ability to detect viral RNA from samples.

Continue reading “XpressAmp™ Direct Amplification: Simplified and Accelerated Time to qPCR Results”

Demystifying What It Means to Be Good Enough…

Today’s post is written by guest blogger, Elizabeth Smith, PhD, Field Client Support Specialist at Promega

As a person of color (POC), I would like to share my story to raise awareness on how important diversity programs are in my community and how they helped to shape my career. My hope is that it will inspire the younger generation and provide insight into a different perspective. Growing up, I always felt like there was something great out there for me to achieve. As a young child, never did I imagine that I would have what it takes to obtain a PhD. This was not on my radar as a young student, and not something that I thought would ever be in my future. I did not see people that looked like me reflected in this space, so I never considered it early on.

I knew that I wanted to go to college with a science focus, but I did not really explore what life would look like or should look like after that. What I was sure of was being involved in science in some way. Whenever, someone asked my younger self, “What do you want to be when you grow up?” My answer would always be, “A Scientist!” All throughout elementary and high school, I focused on science related courses and did very well. This enabled me to apply for and receive a full undergraduate scholarship.

At this level of my education, I felt like I had to prove to everyone, and even myself, that I belonged here. That I was deserving of this scholarship and placement at the university. That I was good enough to receive a bachelors.

Continue reading “Demystifying What It Means to Be Good Enough…”

More muscle from eggs? Proteo-lipid complex may help prevent age-associated loss of muscle-mass

In older people, low muscle mass is strongly associated with reduced functional capacity and an increased risk of disability. Myostatin is a negative regulator of muscle growth and has become an important target for pharmaceutical companies designing therapeutics to address age-associated muscle loss.

Anti-myostatin drugs increase muscle size and strength in preclinical studies. Fortetropin is a proteo-lipid complex made from fertilized egg yolk and shows anti-myostatin activity. When Fortetropin is provided as a supplement, lowered circulating myostatin levels are observed both in rodents and in young men. Fortetropin in combination with resistance exercise also lowers myostatin and increased lean body mass.

Continue reading “More muscle from eggs? Proteo-lipid complex may help prevent age-associated loss of muscle-mass”

Answers to the Most Common Questions from “Battling the Novel Coronavirus” Online Event

This post was written by guest blogger, Nitin Kapoor, from our Promega India branch office.

The COVID-19 crisis has led to substantial worldwide efforts to develop drug treatments and vaccines effective against SARS-CoV-2.  Termed a novel Coronavirus, SARS-CoV-2 belongs to the same family as that of SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) viruses that were responsible for epidemics in 2003 and 2012 respectively (Lu et al. 2020)

Continue reading “Answers to the Most Common Questions from “Battling the Novel Coronavirus” Online Event”

Capillary Electrophoresis On Your Benchtop

Spectrum Compact CE System

Here’s the good news: The Spectrum Compact CE System is now available from Promega. 

Here’s the better news: Labs of all sizes now have the opportunity to perform Sanger sequencing and fragment analysis with a personal, benchtop instrument. 

There is no bad news. 

Continue reading “Capillary Electrophoresis On Your Benchtop”

What Have You Done for Your Bones Lately?

Image of human skeleton, bones.
The many bones in a human. Bone density measurements are typically taken of hip, lower spine and wrist. Photo By Sklmsta, licensed under CC0.

How is your work from home (WFH) exercise routine going? Have you been able to maintain some semblance of a normal exercise routine? Many of us are staying home to avoid potential SARS-CoV-2 infection.

That’s very important. But after six or so months into the pandemic, one starts to consider the impact of not getting more strenuous and varied forms of physical exercise. We frequently think of exercise and it’s effect on muscle tone and heart and lung fitness. But it goes deeper than that. Our bone health is also at risk from lack of exercise.

Bones: Your Newest Tissue
It’s no secret that our bones are tough, made of minerals like calcium and phosphorous. They help us keep upright, supporting a considerable amount of weight against the force of gravity. Bone also protects organs.

Until recently, little attention has been paid to how metabolically active bone is. Research is now revealing that bone is not simply mineralized scaffolding surrounding bone marrow. Bone is actually a tissue, with vasculature and cells with cilia and dendrites that reach through the bony scaffolding, signaling to other cells. This cellular network, influenced by hormones and other compounds produces new bone, and sometimes reabsorbs existing bone, depending on individual needs and state of health.

Continue reading “What Have You Done for Your Bones Lately?”

More than Gazpacho: Farming the Soil to Sustain the Ecosystem

This post was written by guest blogger, Karen Stakun, Brand Manager at Promega Corporation.

When I arrived at the garden that morning, I was completely focused on the clusters of ripe tomatoes I’d hoped to see. I was there to take photographs, and the red, ripe fruit was going to be the star of the show. In every direction, there were long rows of plants: raspberries, peppers, okra, cabbage, fennel and kale. A black pickup truck pulled up to the edge of the Promega garden and a pair of well-worn work boots landed hard on the dewy grass. Mike Daugherty introduced himself as a Master Gardener, Master Composter, and member of the Promega culinary services team.

Mike laid out black plastic crates at the end of each row of the tomato garden. There were 700 bed feet of heirloom slicers and paste tomatoes to be harvested. Seduced by the intense red, orange and yellow of the juicy tomatoes, my thoughts immediately drifted to visions of BLT’s, caprese salad and gazpacho soup. As he hand-carried 3 or 4 tomatoes at a time and laid them in the crates, Mike called my attention to all the other things that were going on around the fruit.

Continue reading “More than Gazpacho: Farming the Soil to Sustain the Ecosystem”

Lessons in History, Hope and Living with Lynch Syndrome from the “Daughter of Family G”

Lynch Syndrome is the autosomal dominant hereditary predisposition to develop colorectal cancer and certain other cancers. This simple, one sentence definition seems woefully inadequate considering the human toll this condition has inflicted on the families that have it in their genetic pedigree.

They Called it a Curse

To one family, perhaps the family when it comes to this condition, Lynch Syndrome has meant heartache and hope; grief and joy; death and life. Their story is told by Ami McKay in her book Daughter of Family G, and it is at once both a memoir of a Lynch Syndrome previvor (someone with a Lynch Syndrome genomic mutation who has not yet developed cancer) and a poignant and honest account of the family that helped science put name to a curse.

“The doctors called it cancer. I say it’s a curse. I wish I knew what we did to deserve it.”

Anna Haab from Daughter of Family G (1)

The scientific community first met “Family G” as the meticulously created family tree, filled with the stunted branches that mark early deaths by cancer. The pedigree was first published in 1913 in Archives of Internal Medicine (2). In the article, Dr. Alderd Warthin wrote: “A marked susceptibility to carcinoma exists in the case of certain family generations and family groups.” In 1925, an expanded pedigree of circles and squares was published in Dr. Warthin’s follow up study in the Journal of Cancer Research (3).  But each circle and square in that pedigree denotes a person. Each line represents their dreams together for the future, and Ms. McKay wants us to know their names: Johannes and Anna, Kathrina, Elmer, Tillie, Sarah Anne (Sally); and—most importantly—Pauline. Because without Pauline there would be no story.

Continue reading “Lessons in History, Hope and Living with Lynch Syndrome from the “Daughter of Family G””

NanoLuc® Luciferase: Brighter Days Ahead for In Vivo Imaging

nanoluc in vivo imaging

The development of NanoLuc® luciferase technology has provided researchers with new and better tools to study endogenous biology: how proteins behave in their native environments within cells and tissues. This small (~19kDa) luciferase enzyme, derived from the deep-sea shrimp Oplophorus gracilirostris, offers several advantages over firefly or Renilla luciferase. For an overview of NanoLuc® luciferase applications, see: NanoLuc® Luciferase Powers More than Reporter Assays.

The small size of NanoLuc® luciferase, as well the lack of a requirement for ATP to generate a bioluminescent signal, make it particularly attractive as a reporter for in vivo bioluminescent imaging, both in cells and live animals. Expression of a small reporter molecule as a fusion protein is less likely to interfere with the biological function of the target protein. NanoLuc® Binary Technology (NanoBiT®) takes this approach a step further by creating a complementation reporter system where one subunit is just 11 amino acids in length. This video explains how the high-affinity version of NanoBiT® complementation (HiBiT) works:

Continue reading “NanoLuc® Luciferase: Brighter Days Ahead for In Vivo Imaging”