Firefly Luciferase Sheds Light on Development of New Malaria Treatments

field of fireflies at night; researchers are using firefly luciferase as a tool to power screening assays for new malaria treatments

Despite significant advancements in antimalarial drugs and widespread efforts to prevent transmission over the past decade, deaths from malaria remain high, particularly in younger children. New drugs with novel modes of action are urgently needed to continue reducing mortality and address drug resistance in the malaria parasite, Plasmodium falciparum. While tens of thousands of compounds have been identified as potential candidates through massive screening efforts, scalable methods for identifying the most effective compounds are needed.

The goal is to find a drug that is potent during all stages in the life cycle of P. falciparum and kills the parasite quickly. Focusing on assessing whether a compound can rapidly eliminate initial parasite burden, Paul Horrocks, PhD, and his colleagues developed a validated bioluminescence-based assay that rapidly determines the initial rate of kill for discovery antimalarials. One key to developing their assay was figuring out how to monitor when the parasite dies after introducing the drug. While measuring DNA content can be used to monitor parasite burden, it is too stable to use for a relevant time course assay.

See how Dr. Paul Horrocks uses a firefly luciferase-based system to understand the dynamics of drug action in the development of new malaria treatments.

Enter firefly luciferase, a dynamic reporter tool to investigate drug action. By creating transgenic P. falciparum that express the luc reporter gene, the researchers could monitor drug action over time. When the parasite is killed, it stops making the luciferase reporter. Since there is no new production of luciferase, levels fall quickly after the parasite dies, and a luciferase assay can determine how fast each drug killed the parasite.

Continue reading “Firefly Luciferase Sheds Light on Development of New Malaria Treatments”

Paving New Ways for Drug Discovery & Development: Targeted Protein Degradation

The Dana-Farber Targeted Protein Degradation Webinar Series discusses new discoveries and modalities in protein degradation.

In this webinar, Senior Research Scientist, Dr. Danette Daniels, focuses primarily on proteolysis-targeting chimeras, or PROTACs. A variety of topics are covered including the design, potency, and efficacy of PROTACs in targeted protein degradation. Watch the video below to learn more about how PROTACs are shifting perspectives through fascinating research and discoveries in targeted protein degradation.

Learn more about targeted protein degradation and PROTACS here.

Bioluminescent Sharks Set the Sea Aglow

Many deep sea creatures are bioluminescent. However, before documenting the luminescence of the kitefin shark, Dalatias licha, there has never been a nearly six-foot long luminous vertebrate creature. In a recent study, Mallefet and colleagues examined three species of sharks: Dalatias licha, Etmopterous lucifer, and Emopterus granulosus and documented their luminescence for the first time. These bioluminescent sharks are the largest bioluminescent creatures known.

Researchers studied three species of bioluminescent sharks near the Chatham Islands, New Zealand
Coastline of one of the Chatham Islands, New Zealand
Continue reading “Bioluminescent Sharks Set the Sea Aglow”

COVID-19 Therapies: Are We There Yet?

A year after COVID-19 was declared a pandemic, collaborative efforts among pharma/biotech and academic researchers have led to remarkable progress in vaccine development. These efforts include novel mRNA vaccine technology, as well as more conventional approaches using adenoviral vectors. While vaccine deployment understandably has captured the spotlight in the fight against COVID-19, there remains an urgent need to develop therapeutic agents directed against SARS-CoV-2.

COVID-19 therapeutic drugs

In the March 12 issue of Science, an editorial by Dr. Francis Collins, director of the U.S. National Institutes of Health (NIH), examines lessons learned over the past 12 months (1). Collins points out that many clinical trials of potential therapeutics were not designed to suit a public health emergency. Some were poorly designed or underpowered, yet they received considerable publicity—as was the case with hydroxychloroquine. Collins advises developing antiviral agents targeted at all major known classes of pathogens, to head off the next potential pandemic before it becomes one. A news feature in the same issue discusses the current state of coronavirus drug development (2).

The present crop of drug candidates is remarkably diverse, including repurposed drugs that were originally developed to treat diseases quite different from COVID-19. Typically, however, the mainstream candidates belong to two broad classes: small-molecule antiviral agents and large-molecule monoclonal antibodies (mAbs).

Continue reading “COVID-19 Therapies: Are We There Yet?”

Promega Biotech Ibérica Earns Recognition for Contributions to the COVID-19 Pandemic Response in Spain

Small- and medium-sized companies are critical to the Spanish economy. During 2020 the COVID-19 pandemic made business difficult for many of these companies, yet they have demonstrated strength and resourcefulness and have led the pandemic recovery in Spain in many ways. Recently, Promega Biotech Ibérica was recognized with a Madrid Community SME (small- and medium-sized business) Award along with 15 other companies. The awards were presented by Manuel Giménez, Minister of Economy, Employment and Competitiveness of the Madrid Region, Andres Navarro delegate director of La Razón, and Francisco Marhuenda, director of La Razón. As part of the award, Promega Biotech Ibérica General Manager, Gijs Jochems, was interviewed about the award and Promega’s work in the region.

Gijs Jochems, General Manager of Promega Biotech Ibérica accepts the Madrid Community SME Award.
Gijs Jochems, General Manager of Promega Biotech Ibérica accepts the Madrid Community SME Award.

According to Gijs Jochems, General Manager of Promega Biotech Ibérica, while Promega Corporation is an American multinational company, it remains privately held, which offers a great deal of flexibility to the subsidiaries to adapt to local needs. It also allows the company to place increased emphasis on employee well-being (critical during the pandemic), reinvest profits in research and development, and work to mitigate the impact of company activities on the environment. All these business practices reflect a long-term vision of sustainable business growth.

Continue reading “Promega Biotech Ibérica Earns Recognition for Contributions to the COVID-19 Pandemic Response in Spain”

Sanitation and World Water Day 2021: What Would You Change about Water in Your Area?

Today, March 22, is World Water Day 2021, recognized by the United Nations and people around the world as a time to focus on the goal of available clean water for all.

United Nations World Water Day 2021 Graphic

Clean water for drinking is essential for our existence. A human can only survive without water for about three days.

While water is essential for life, the need goes beyond simple consumption. As is true of so many things, the COVID-19 pandemic has shown us the need for sanitation—being able to wash our hands, our clothes and ourselves with clean water, being able to rinse foods and a safe means by which to dispose of, or recycle the dirty water afterwards. And, even the need to monitor wastewater to help track infectious disease outbreaks.

World Bank and Sustainable Development Goal #6 (#SDG6)

The World Bank provides an extravagance of data on their sustainable development goal #6, Clean Water and Sanitation, noting the importance of water “for health, the environment and sustainable development”.
To add to the needs surrounding water and its scarcity, the World Bank states that:

Despite gains, more than half the world’s people lack access to safely managed sanitation services.

Continue reading “Sanitation and World Water Day 2021: What Would You Change about Water in Your Area?”

Impact of COVID-19 Pandemic on Cancer Diagnosis—When Fewer Cases of Cancer is Not Good News

The year 2020 was a year filled with things we didn’t do. The global COVID-19 pandemic meant we didn’t gather with family and friends; we didn’t attend concerts or sporting events; we didn’t even go to work or school in the same way. We also didn’t go to the doctor, and as a result, many countries and organizations are reporting that there was an alarming drop in the number of new cancer cases (1–6). Unfortunately, while fewer diagnosis might sound like a good thing, there is no evidence that the actual rate of new cancer occurrence is declining (7).  

COVID-19 Restrictions Impact Cancer Screening and Diagnosis

The drop in cancer diagnosis happened after countries began to put into place new restrictions intended to slow the spread of the SARS-CoV-2 virus. These measures often included limiting or pausing many routine screenings and doctor visits, which also limited or paused opportunities to diagnosis cancer. The resulting decline in new cancer diagnosis was dramatic. In the United States, there was a 46.4% decline in the number of newly diagnosed cases of six of the most common cancer types (breast, colorectal, esophageal, gastric, lung and pancreatic) per week between March 1, 2020 and April 18, 2020 (1,2,8).

Continue reading “Impact of COVID-19 Pandemic on Cancer Diagnosis—When Fewer Cases of Cancer is Not Good News”

From Primate Models to SARS-CoV-2 Sequencing and Testing

As the SARS-CoV-2 virus spread around the world in early 2020, many researchers shifted their focus to support the global endeavors to address the challenge. For two professors at the University of Wisconsin, their efforts started with animal models to study pathogenicity and grew into massive SARS-CoV-2 sequencing and COVID-19 testing projects.

Virologists David and Shelby O'Connor (shown running along Lake Mendota) have worked extensively in SARS-CoV-2 Sequencing and COVID-19 Testing

“Being a scientist in this field gives a sense of purpose, but also a sense of obligation and responsibility,” says David O’Connor, PhD. “You always want to feel like you’re living up to that.”

Continue reading “From Primate Models to SARS-CoV-2 Sequencing and Testing”

Engineering a Safer SARS-CoV-2 for Use in the Research Laboratory

This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses such as SARS-CoV-2. Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM CDC
SARS-CoV-2 illustration from CDC; Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM
E = envelope; M = membrane

A worldwide pandemic requires scientific research to understand the viral pathogen. The focused efforts of global scientists are even more necessary in the face of a novel coronavirus like SARS-CoV-2, the causative agent of COVID-19. However, because SARS-CoV-2 causes human disease, research efforts are restricted by the need for physical laboratories that are equipped to handle the required level of containment and personnel trained to handle pathogens in these facilities. But what if we could bypass the restrictive facility requirements by engineering a synthetic, replication-defective version of SARS-CoV-2 that more researchers could use to study the pandemic coronavirus, expanding the capacity to test and develop methods to attenuate its devastating effect on humans?

The challenge is to develop a derivative of SARS-CoV-2 that reflects how it behaves in the cell but is compromised such that it is unable to infect cells more than a single time. That is, the virus can get into a cell or be introduced into cells and replicate but is unable to produce infectious virus would offer a pathway to expand research capacity without the use of special laboratory facilities. This replication-defective SARS-CoV-2 could be created to encode as much or as little of the genome needed to examine its lifecycle without becoming a fully infectious virus. In fact, this replication-defective version of SARS-CoV-2 could include additional genetic elements that could be used to control its expression, track the virus in cells and measure the level of its replication. This task has been undertaken by Dr. Bill Sudgen’s group at the University of Wisconsin–Madison McArdle Laboratory for Cancer Research, explained by graduate student Rebecca Hutcheson during her presentation “Making the Virus Causing COVID-19 Safe for Research”.

Continue reading “Engineering a Safer SARS-CoV-2 for Use in the Research Laboratory”