No More Dead Ends: Improving Legionella Testing with Viability qPCR

Image of cooling towers.

Legionella is the causative agent of Legionnaires’ disease, a severe form of pneumonia with a mortality rate of around 10%​. Contaminated water systems, including cooling towers and hot water systems, serve as primary reservoirs for this opportunistic pathogen. Traditional plate culture methods remain the regulatory standard for monitoring Legionella, but these methods are slow—often requiring 7–10 days for results—and suffer from overgrowth by non-Legionella bacteria​. Additionally, traditional methods fail to detect viable but non-culturable (VBNC) bacteria—cells that remain infectious but do not grow on standard culture media. 

Molecular methods like PCR-based detection provide faster and more sensitive Legionella identification. However, a key limitation persists: PCR detects DNA from both live and dead bacteria, leading to false positives and unnecessary or even wasteful remediation efforts​. To address this challenge, Promega has developed a viability qPCR method that retains the speed of molecular testing while distinguishing viable bacteria from non-viable remnants. In this third blog in our Legionella blog series, we cover how molecular detection methods can be refined to provide actionable results for Legionella monitoring. 

Continue reading “No More Dead Ends: Improving Legionella Testing with Viability qPCR”

Overcoming qPCR Inhibitors: Strategies for Reliable Quantification 

Today’s blog is written by guest blogger, Gabriela Saldanha, Senior Product Marketing Manager at Promega.

Quantitative PCR (qPCR) is an indispensable tool for nucleic acid analysis, widely used in research, clinical diagnostics and applied sciences. Its sensitivity and specificity make it a powerful method for detecting and quantifying DNA and RNA targets. However, qPCR reactions are highly susceptible to inhibitors—substances that interfere with enzyme activity, primer binding, or fluorescent signal detection. These inhibitors can originate from biological samples, environmental contaminants, or laboratory reagents, potentially leading to inaccurate quantification, poor amplification efficiency, or complete reaction failure.

Continue reading “Overcoming qPCR Inhibitors: Strategies for Reliable Quantification “

Understanding and Combating Legionella in Water Systems with Viability PCR

Water plays a vital role in countless aspects of daily life—drinking, cooling, recreation and more. However, the same systems that deliver these benefits can also harbor Legionella, a waterborne bacteria responsible for Legionnaires’ disease, a severe form of pneumonia (1). Legionella thrives in stagnant aquatic environments, many of which are human-made and common in modern infrastructure, like in cooling towers, hot tubs and complex building water systems. In this blog, we explore the risks posed by Legionella, the limitations of traditional detection methods and how advanced tools at Promega are transforming water safety monitoring. 

3D illustration showing legionella pneumophilia bacteria in water
Continue reading “Understanding and Combating Legionella in Water Systems with Viability PCR”

Our Maxwell® Travels from Spain to Antarctica to Help Stop the Avian Flu Virus

In January 2024, Antonio Alcamí and Ángela Vázquez, virologists from the Severo Ochoa Centre for Molecular Biology, landed in Antarctica to study the avian flu virus. They embarked on a journey to monitor 17,000 penguins as part of their efforts to study the virus and prevent its spread. Our Maxwell® RSC 48 was delivered to extract nucleic acids from the samples, which are set to be analyzed using qPCR.

Continue reading “Our Maxwell® Travels from Spain to Antarctica to Help Stop the Avian Flu Virus”

An Introduction to Lyophilization: Process, Benefits & Possibilities

Amber glass bottle filled with lyophilized beads sitting on a lab bench.

Lyophilization is a process designed to remove water from a sample or product through a controlled freezing and vacuum application. The method leverages the triple point of water, where solid, liquid, and gas phases coexist under specific temperature and pressure conditions. The result is a room temperature stable product that is much lighter than the original sample or product.

Continue reading “An Introduction to Lyophilization: Process, Benefits & Possibilities”

Promega qPCR Grant Series #3: Immunotherapy Researcher, Dr. Sabrina Alves dos Reis 

Professional headshot image of Dr. Sabrina Alves dos Reis, subject of the blog post
Sabrina Alves dos Reis

In our third and final installment of the Promega qPCR Grant Recipient blog series, we highlight Dr. Sabrina Alves dos Reis, a trained immunotherapy researcher. Her work has focused on developing tools for more accessible cancer therapies using CAR-T cells. Here, we explore Dr. Alves dos Reis’ academic and scientific journeys, highlight influential mentorship and foreshadow her plans for the Promega qPCR grant funds. 

Dr. Alves dos Reis’ career began with a strong affinity for biology. As an undergraduate student, she pursued a degree in biological science, where she developed a foundational understanding for designing and developing research projects. As her passion for science heightened, she decided to continue her journey in science, culminating in a PhD at the Fundação Oswaldo Cruz Institute in Rio de Janeiro, Brazil. Her research projects focused on the unexplored territory of adipose tissue as a site for Mycobacterium leprae—or leprosy bacillus—infection. She mentioned that this work piqued her curiosity for improving immunotherapies and laid the foundation for her future in cancer research.  

Continue reading “Promega qPCR Grant Series #3: Immunotherapy Researcher, Dr. Sabrina Alves dos Reis “

Promega qPCR Grant Series #2: Molecular Biologist, Laura Leighton

Our second installment of the Promega qPCR Grant Recipient blog series highlights Dr. Laura Leighton, a trained molecular biologist and postdoctoral researcher at the Australian Institute for Bioengineering and Nanotechnology. Leighton’s scientific journey features a passion for molecular biology and problem-solving. Her path has been illuminated by mentorship, relationships with fellow scientists and a commitment to creativity in overcoming challenges. Here, we explore her scientific journey, reflect on research lessons and foreshadow her plans for the Promega qPCR grant funds.

Dr. Laura Leighton grew up in a rural area in Far North Queensland, Australia, where she spent her early life exploring critters on the family farm. Her upbringing was infused with a deep connection to the environment, from raising tadpoles in wading pools to observing wildlife and witnessing food grow firsthand. Observing the biology around her ultimately piqued her interest in science from a young age. She then began her academic journey in 2011 at the University of Queensland, Australia. She studied biology while participating in a program for future researchers, which led her to undergraduate research work in several research labs.  She dabbled in many research avenues in order to narrow in on her scientific interests all while adding different research tools to her repertoire.

After serving as a research assistant in Dr. Timothy Bredy’s lab, she decided to continue work in this lab and pursue a PhD in molecular biology. During her PhD, Leighton worked on several projects from cephalopod mRNA interference to neurological wiring in mice. The common thread in these projects is Leighton’s passion for the puzzles of molecular biology:

“I also love molecular engineering and the modularity of molecular parts. There’s something really special about stringing together sequence in a DNA editor, then seeing it come to life in a cell,” she says.

Continue reading “Promega qPCR Grant Series #2: Molecular Biologist, Laura Leighton”

Promega qPCR Grant Series #1: Marine Plant Ecologist, Dr. Agustín Moreira-Saporiti

Dr. Agustín Moreira-Saporiti is a postdoctoral researcher at the Marine Biological Laboratory and is studying flowering processes in marine seagrass

Marine seagrasses are submerged flowering plants that form essential underwater meadows, fostering diverse ecosystems and providing a habitat for marine life. Our first Promega qPCR Grant winner and marine ecologist, Dr. Agustín Moreira-Saporiti, plans to continue adding to a fascinating body of work aimed at understanding flowering in marine seagrasses.

Dr. Moreira-Saporiti began his journey into marine plant ecology at the University of Vigo, Spain, where he earned a bachelor’s degree in marine sciences. He then went on to complete a master’s degree at the University of Bremen (Germany) where his thesis focused the ecology of seagrasses in Zanzibar, Tanzania. His passion for marine botany led him down a deeper exploration of marine plants, unraveling the intricate web of ecosystem processes within seagrasses.

Continue reading “Promega qPCR Grant Series #1: Marine Plant Ecologist, Dr. Agustín Moreira-Saporiti”

No Horsin’ around with Halal Meat Authentication


Today’s blog is written by guest blogger, Sameer Moorji, Director, Applied Markets.  

People’s diets are frequently influenced by a wide range of variables; with environment, socioeconomic status, religion, and culture being a few of the key influencers. The Muslim community serves as one illustration of how culture and religion can hold influence over people’s eating habits.

Halal meat on cutting board

Muslims, who adhere to Islamic teachings derived from the Qur’an, frequently base dietary choices on a food’s halal status, whether it is permissible to consume, or haram status, forbidden to consume. With the population of Muslims expected to expand from 1.6 billion in 2010 to 2.2 billion by 2030, the demand for halal products is anticipated to surge (2).

By 2030, the global halal meat market is projected to reach over $300 billion dollars, with Asia-Pacific and the Middle East regions being the largest consumers and producers of halal meat products (3). Furthermore, increasing awareness and popularity of halal meat among non-Muslim consumers, as well as strengthening preference for ethical and high-quality meat, are all contributing to demand.  

Continue reading “No Horsin’ around with Halal Meat Authentication”

Have No Fear, qPCR Is Here: How qPCR can help identify food contamination

Foodborne disease affects almost 1 in 10 people around the world annually, and continuously presents a serious public health issue (9).

Food Contamination-Strawberries-Blueberries-Magnifying glass
Food Contamination is common and can be seen in a variety of forms and food products.

More than 200 diseases have evolved from consuming food contaminated by bacteria, viruses, parasites, and chemical substances, resulting in extensive increases in global disease and mortality rates (9). With this, foodborne pathogens cause a major strain on health-care systems; as these diseases induce a variety of different illnesses characterized by a multitude of symptoms including gastrointestinal, neurological, gynecological, and immunological (9,2).

But why is food contamination increasing?

New challenges, in addition to established food contamination hazards, only serve to compound and increase food contamination risks. Food is vulnerable to contamination at any point between farm and table—during production, processing, delivery, or preparation. Here are a few possible causes of contamination at each point in the chain (2):

  • Production: Infected animal biproducts, acquired toxins from predation and consumption of other sick animals, or pollutants of water, soil, and/or air.
  • Processing: Contaminated water for cleaning or ice. Germs on animals or on the production line.
  • Delivery: Bacterial growth due to uncontrolled temperatures or unclean mode of transport.
  • Preparation: Raw food contamination, cross-contamination, unclean work environments, or sick people near food.

Further emerging challenges include, more complex food movement, a consequence of changes in production and supply of imported food and international trade. This generates more contamination opportunities and transports infected products to other countries and consumers. Conjointly, changes in consumer preferences, and emerging bacteria, toxins, and antimicrobial resistance evolve, and are constantly changing the game for food contamination (1,9).

Hence, versatile tests that can identify foodborne illnesses in a rapid, versatile, and reliable way, are top priority.

Continue reading “Have No Fear, qPCR Is Here: How qPCR can help identify food contamination”