The Price for Convenience May Not Be That Pricey After All

Hour glass

I was having a discussion with my mother just the other day about cleaning products (lively topic, I know). She showed me her newest time saver…prediluted bleach. Huh, I thought. I guess that does save a bit of time, but I couldn’t resist telling her that she was paying triple the price for a whole lot of water. She said, without pause, that it was worth it to her to not have to splash fully concentrated bleach around. A convenience worth paying for, in her words.

I don’t know why this struck me as odd. I pay for convenience all the time as I get older. When I started running gels back in college, I wouldn’t have dreamed of buying a precast gel, but several years into my lab life I found myself running more than 15 gels a week, so precast was really a convenient alternative. When I was a grad student, I poured all of my own plates (and most of the plates for older students, too!). Fast forward a few years, and I running upwards of 300 microbial selective cultures per week. The switch to prepoured plates was a no brainer.

When put in the context of what our time is worth, would you rather be thawing and mixing loading dyes, buffers, stains, reagents, etc., or are you better of grabbing a premixed, room-temp stable dye or ladder/loading dye mix off the shelf and getting on with your research? I think most scientists would agree that these small conveniences allow you to free up a little more time to do the important work you should be doing.

I’m curious…what time savers or convenience items do you find that make your day a little easier in the lab?

Now Available for Purchase: Promega Colony Counter App

colony counterDo you count colonies on agar plates? Do you often need to average counts over a series of plates? The Promega Colony Counter app for iPhone® (3GS, 4S, and 5) and iPod® Touch (4th and 5th generation) allows you to take a picture of your plate, obtain a good first-guess count and refine it quickly by marking additional colonies and masking areas where the app may have over-counted.

The app is available for purchase for 3.99 USD from the iTunes store in North America and Europe.

Proteinase K: An Enzyme for Everyone

protein expression purification and analysis

We recently posted a blog about Proteinase K, a serine protease that exhibits broad cleavage activity produced by the fungus Tritirachium album Limber. It cleaves peptide bonds adjacent to the carboxylic group of aliphatic and aromatic amino acids and is useful for general digestion of protein in biological samples. In that previous blog we focused on its use to remove RNase and DNase activities. However, the stability of Proteinase K in urea and SDS and its ability to digest native proteins make it useful for a variety of applications. Here we provide a brief list of peer-reviewed citations that demonstrate the use of proteinase K in DNA and RNA purification, protein digestion in FFPE tissue samples, chromatin precipitation assays, and proteinase K protection assays:

Continue reading “Proteinase K: An Enzyme for Everyone”

ProK: An Old ‘Pro’ That is Still In The Game

Proteinase K Ribbon Structure ImageSource=RCSB PDB; StructureID=4b5l; DOI=http://dx.doi.org/10.2210/pdb4b5l/pdb;
Proteinase K Ribbon Structure ImageSource=RCSB PDB; StructureID=4b5l; DOI=http://dx.doi.org/10.2210/pdb4b5l/pdb;

If you enter any molecular lab asking to borrow some Proteinase K, lab members are likely to answer: “I know we have it. Let me see where it is”. Sometimes the enzyme will be found to have expired. The lab may also have struggled with power outages or freezer malfunctions in the past. But the lab still decides to keep the enzyme. One may rightly ask – why do labs hang on to Proteinase K even when it has been stored under sub-standard conditions?

Continue reading “ProK: An Old ‘Pro’ That is Still In The Game”

A New Edge in Bisulfite Conversion

methyledge_featureproduct_280x140

Aberrant methylation events have significant impacts in terms of incidence of cancer and development disregulation. Researchers studying DNA methylation are often working with DNA from “difficult” tissues such as formalin-fixed, paraffin embedded tissues, which characteristically yield DNA that is more fragmented than that purified from fresh tissue. Traditional methods for bisulfite conversion involve a long protocol, harsh chemicals, and generally yield highly fragmented DNA. The DNA fragmentation may significantly impact the utility of the converted DNA in downstream applications such as bisulfite-specific PCR or bisulfite sequencing.

An ideal bisulfite conversion system enables complete conversion of a DNA sample in a short period of time, provides high yield of DNA, minimally fragments the DNA, works on a wide range of input DNA amounts (from a wide variety of sample types), and, while we’re at it, is easy to use and to store. Whew! That’s quite the list.

Continue reading “A New Edge in Bisulfite Conversion”

“Fingerprinting” Your Cell Lines

Working in the laboratoryResearchers working with immortalized cell lines would readily agree when I state that it is almost impossible to look at cells under the microscope and identify them by name. There are phenotypic traits, however they do change with change in media composition, passage number and in response to growth factors. I remember the pretty arborizations my neuroblastoma cell line SH-SY5Y exhibited in response to nerve growth factor treatment. Thus physical appearance is not a distinguishing feature. Currently, in many labs, researchers typically use more than one cell line, and more than likely, share the same lab space to passage cells and the same incubator to grow the cells. In such scenarios, it is not difficult to imagine that cell lines might get mislabeled or cross-contaminated. For example HeLa cells, one of the fastest growing cell lines have been shown to invade and overtake other cell lines.

Misidentification of cell lines has deep and severe implications. A review of cell lines used to study esophageal adenocarcinoma found that a large number of the cell lines were actually derived from lung or gastric cancers. Unfortunately, by the time this error was discovered, data from these cell line studies were already being used for clinical trials and other advanced studies and publications. Moreover, the cell lines were being to screen and design and test specific cancer drugs which ended up in flawed clinical trials. Continue reading ““Fingerprinting” Your Cell Lines”

DNA Purification, Quantitation and Analysis Explained

WebinarsYesterday I listened in on the Webinar “Getting the Most Out of Your DNA Analysis from Purification to Downstream Assays”, presented by Eric Vincent–a Product Manager in the Promega Genomics group.

This is the webinar for you if you have ever wondered about the relative advantages and disadvantages of the many methods available for DNA purification, quantitation and analysis, or if you are comparing options for low- to high-throughput DNA purification. Eric presents a clear analyses of each of the steps in a basic DNA workflow: Purification, Quantitation, Quality Determination, and Downstream Analysis, providing key considerations and detailing the potential limitations of the methods commonly used at each step.

The DNA purification method chosen has an affect on the quality and integrity of the DNA isolated, and can therefore affect performance in downstream assays. Accuracy of quantitation also affects success, and the various downstream assays themselves (such as end-point PCR, qPCR, and sequencing) each have different sensitivities to factors such as DNA yield, quality, and integrity, and the presence of inhibitors. Continue reading “DNA Purification, Quantitation and Analysis Explained”

Choosing the Right Reverse Transcriptase for Your Project

There are a lot of choices when it comes to reverse transcriptases.  Choosing the correct one for your cDNA synthesis and RT-PCR project is important.    Here are a few questions that will lead you to right RT for your application: Continue reading “Choosing the Right Reverse Transcriptase for Your Project”

Methods for Determining DNA Yield and Concentration

Determining DNA Yield and Purity

This post is provided as a general introduction to common laboratory methods for determining the yield and purity of purified DNA samples. DNA yield can be assessed using various methods including absorbance (optical density), agarose gel electrophoresis, or use of fluorescent DNA-binding dyes.  All three methods are convenient, but have varying requirements in terms of equipment needed, ease of use, and calculations to consider.

Continue reading “Methods for Determining DNA Yield and Concentration”

Bisulfite Conversion and Next Gen Sequencing

WebinarsIn my last entry, I gave a little summary of one of many techniques that are used to study DNA methylation patterns in a loci-specific fashion using the COBRA technique. This time, we’ll take a look at a high-throughput, genome-wide method for analyzing DNA methylation status using a next generation sequencing approache called bisulfite sequencing, or Bis-Seq. Continue reading “Bisulfite Conversion and Next Gen Sequencing”