Top Ten Tips for Successful PCR

We decided to revisit a popular blog from our Promega Connections past for those of you in the amplification world. Enjoy:

magnesium-31

    • Modify reaction buffer composition to adjust pH and salt concentration.
    • Titrate the amount of DNA polymerase.
    • Add PCR enhancers such as BSA, betaine, DMSO, nonionic detergents, formamide or (NH4)2SO4.
    • Switch to hot-start PCR.
    • Optimize cycle number and cycling parameters, including denaturation and extension times.
    • Choose PCR primer sequences wisely.
    • Determine optimal DNA template quantity.
    • Clean up your DNA template to remove PCR inhibitors.
    • Determine the optimal annealing temperature of your PCR primer pair.

[Drum roll please]…and the  most important thing you can do to improve your PCR results is:

  • Titrate the magnesium concentration.

Successful Ligation and Cloning of Your Insert

Ligation and cloning
Cloning PCR product.

You have PCR amplified your insert of interest, made sure the PCR product is A tailed and are ready to clone into a T vector (e.g., pGEM®-T Easy Vector). The next step is as simple as mixing a few microliters of your purified product with the cloning vector in the presence of DNA ligase, buffer and ATP, right? In fact, you may need to consider the molar ratio of T vector to insert.

Continue reading “Successful Ligation and Cloning of Your Insert”

Don’t Let Ribonucleases Ruin Your Week(end): Establish a Ribonuclease-free Environment

buffers_image1_274x218

My very first job in science was in a lab that worked exclusively with RNA, and it was only after I moved on to a different job that I learned just how much different the world of DNA research is from that of RNA. When working with DNA, for example, you rarely if ever have the sample you have labored over reduced to a fuzzy blur at the bottom of a gel because it has been degraded beyond rescue. With RNA, unfortunately, this happens all too frequently. In fact, a labmate of mine once put up a poll on the door to our lab asking if it was better to discover that your RNA sample was degraded on a Monday or a Friday.

The culprits in this scenario are Ribonucleases (RNases). They are everywhere. They are incredibly stable and difficult to inactivate. And, if you work with RNA, they are your enemy. Take heart though, they can be defeated if you follow some pretty simple steps.

Continue reading “Don’t Let Ribonucleases Ruin Your Week(end): Establish a Ribonuclease-free Environment”

Cell Line Misidentification Rears Its Ugly Head

Cancer cell illustration

Back in 2009, we reported on the problem of cell line contamination (1). In that article we reported the statistics that an estimated 15–20% of the time, the cell lines used by researchers are misidentified or cross-contaminated with another cell line (1). This presents a huge problem for the interpretation of data and the reproducibility of experiments, a key pillar in the process of science. We have revisited this topic several times, highlighting the issues cell and tissue repositories have discovered with cell lines submitted to them (2) and discussing the new guidelines issued by ANSI (3,4) for researchers regarding when during experimental processes cell lines should be authenticated and what methods are acceptable for identifying cell lines.

Just recently two papers were voluntarily retracted by their authors because of cross contamination among cell lines used in the laboratories. The first that came to my attention represented the first retraction from Nature Methods in its nine years of publication. In this paper, cross contamination of a primary gliomasphere cell lines with HEK cells expressing GFP resulted in “unexplained autofluorescence” associated with tumorigenicity (5). The second paper, retracted from Cancer Research by the original authors, was also another cross contamination story involving HEK cells (6). In this story a gene was incorrectly described as a tumor suppressor, that when silenced led to the formation of tumors in nude mice. It turns out that the contaminating HEK cells also failed to express this same gene.

So because of cross contamination of cell lines, two groups have voluntarily retracted papers. Being open and honest about what had happened with the cell lines and reaching the decision to retract the papers could not have been an easy thing, but these decisions benefit the scientific community in many ways. Obviously they benefit the researchers doing work on the specific research questions addressed by the papers by preventing researchers from pursuing paths that lead to dead ends. But in the bigger picture these retractions reinforce the argument that cell line authentication needs to become a routine and accepted part of any experimental process that depends on cell culture if we are to have confidence in the experimental results.

References

  1. Dunham, J.H. and Guthmiller, P.  (2009) Doing good science: Authenticating cell line identity. Promega Notes 101, 15–18.
  2. Duham, J.H. and Guthmiller, P. (2012) Doing good science: Authenticating cell line identity. Promega PubHub. [Internet: Accessed September 2013]
  3. Gopal, A. (2013) Fingerprinting  your cell lines. Promega Connections blog [Internet: Accessed September 2013]
  4. Sundquist, T. (2013) Preventing the heartache of cell line contamination. Promega Connections blog [Internet: Accessed September 2013]
  5. Evanko, D. (2013) A retraction resulting from cell line contaminationMethagora blog. [Internet Accessed September 2013]
  6. Negorev, D. (2013) Retraction: Sp100 as a potent tumor suppressor: Accelerated senescence and rapid malignant transformation of human fibroblasts through modulation of an embryonic stem cell program. Can. Res. 73, 4960.

Preventing the Heartache of Cell Line Misidentification

Golden mask

It’s a scientist’s nightmare: Spending time and resources to investigate a biological phenomenon only to learn later that your cells are not what you think they are—their true identities hidden. As a result, all of the data that you’ve generated with those cells, published and unpublished, are cast into doubt. You thought that you knew your cells, that you could trust them, but your trust was misplaced. At some point, perhaps even before the traitorous cell line entered your laboratory, the cells were mislabeled, misidentified or contaminated with another cell line. It didn’t have to be this way. There are easy steps you can take to prevent the headache and heartache of cell line misidentification and contamination.

Continue reading “Preventing the Heartache of Cell Line Misidentification”

Safety First (and Sensitivity too!): Diamond™ Nucleic Acid Dye

product photo for diamond™ nucleic acid dye

Gel electrophoresis and gel staining are common lab tasks that you may not think too much about.  It’s a fairly routine part of your day…purify DNA or RNA, check it on a gel.  As you probably know, interchelating agents like ethidium bromide can be used to visualize your nucleic acids on a gel for relatively low cost. The problem with ethidium bromide is that it’s highly mutagenic, making it less than ideal to work with and disposal of ethidium bromide can be quite costly. There are other commercially available alternatives to ethidium bromide that use fluorescent-based dyes to detect nucleic acids in gels. Some of these are touted to be safer than ethidium bromide; others are marketed as more sensitive.  If you are going to switch from an interchelating agent to something safer, you certainly don’t want to lose out on sensitivity.

To make your gel staining safer, more convenient, and more cost-effective, we’ve developed the Diamond™ Nucleic Acid Dye. This dye is not detectably genotoxic or cytotoxic at the 1:10,000 dilution recommended for gel staining, as determined by the Ames MPF™ Assay, is more sensitive than competing fluorescent-type “safe” dyes, and, in its concentrated form, is room-temperature stable for 90 days (1, 2).   If you are looking to switch to a safer, more sensitive way to stain your polyacrylamide or agarose gels to visualize your DNA or RNA, you may want to give the Diamond™ Nucleic Acid Dye a try.

  1.  Schagat, T. and Hendricksen, A. Diamond™ Nucleic Acid Dye is a Safe and Economical Alternative to Ethidium Bromide. [Internet] July 2013; tpub 125. [cited: 2013, July, 29].
  2. Truman, A., Hook, B. and Hendricksen, A. Diamond™ Nucleic Acid Dye: A Sensitive Alternative to SYBR® Dyes. [Internet] June 2013; tpub 121. [cited: 2013, July, 29].

The Price for Convenience May Not Be That Pricey After All

Hour glass

I was having a discussion with my mother just the other day about cleaning products (lively topic, I know). She showed me her newest time saver…prediluted bleach. Huh, I thought. I guess that does save a bit of time, but I couldn’t resist telling her that she was paying triple the price for a whole lot of water. She said, without pause, that it was worth it to her to not have to splash fully concentrated bleach around. A convenience worth paying for, in her words.

I don’t know why this struck me as odd. I pay for convenience all the time as I get older. When I started running gels back in college, I wouldn’t have dreamed of buying a precast gel, but several years into my lab life I found myself running more than 15 gels a week, so precast was really a convenient alternative. When I was a grad student, I poured all of my own plates (and most of the plates for older students, too!). Fast forward a few years, and I running upwards of 300 microbial selective cultures per week. The switch to prepoured plates was a no brainer.

When put in the context of what our time is worth, would you rather be thawing and mixing loading dyes, buffers, stains, reagents, etc., or are you better of grabbing a premixed, room-temp stable dye or ladder/loading dye mix off the shelf and getting on with your research? I think most scientists would agree that these small conveniences allow you to free up a little more time to do the important work you should be doing.

I’m curious…what time savers or convenience items do you find that make your day a little easier in the lab?

Now Available for Purchase: Promega Colony Counter App

colony counterDo you count colonies on agar plates? Do you often need to average counts over a series of plates? The Promega Colony Counter app for iPhone® (3GS, 4S, and 5) and iPod® Touch (4th and 5th generation) allows you to take a picture of your plate, obtain a good first-guess count and refine it quickly by marking additional colonies and masking areas where the app may have over-counted.

The app is available for purchase for 3.99 USD from the iTunes store in North America and Europe.

Proteinase K: An Enzyme for Everyone

protein expression purification and analysis

We recently posted a blog about Proteinase K, a serine protease that exhibits broad cleavage activity produced by the fungus Tritirachium album Limber. It cleaves peptide bonds adjacent to the carboxylic group of aliphatic and aromatic amino acids and is useful for general digestion of protein in biological samples. In that previous blog we focused on its use to remove RNase and DNase activities. However, the stability of Proteinase K in urea and SDS and its ability to digest native proteins make it useful for a variety of applications. Here we provide a brief list of peer-reviewed citations that demonstrate the use of proteinase K in DNA and RNA purification, protein digestion in FFPE tissue samples, chromatin precipitation assays, and proteinase K protection assays:

Continue reading “Proteinase K: An Enzyme for Everyone”

ProK: An Old ‘Pro’ That is Still In The Game

Proteinase K Ribbon Structure ImageSource=RCSB PDB; StructureID=4b5l; DOI=http://dx.doi.org/10.2210/pdb4b5l/pdb;
Proteinase K Ribbon Structure ImageSource=RCSB PDB; StructureID=4b5l; DOI=http://dx.doi.org/10.2210/pdb4b5l/pdb;

If you enter any molecular lab asking to borrow some Proteinase K, lab members are likely to answer: “I know we have it. Let me see where it is”. Sometimes the enzyme will be found to have expired. The lab may also have struggled with power outages or freezer malfunctions in the past. But the lab still decides to keep the enzyme. One may rightly ask – why do labs hang on to Proteinase K even when it has been stored under sub-standard conditions?

Continue reading “ProK: An Old ‘Pro’ That is Still In The Game”