Wisconsin’s Public-Private Partnership to Increase COVID-19 Testing Capacity

This blog is written by Sara Mann, General Manger, Promega North America Branch

Promega is part of a new public-private partnership among Wisconsin industry leaders to increase the state’s laboratory testing capacity for COVID-19. I am pleased to represent Promega in this effort. The valuable insight we at Promega are gaining every day through our participation in this innovative partnership not only benefits Wisconsin labs, it also provides unique understandings about how we can best meet the testing needs of our customers around the world.

Promega Maxwell Instrument shown in a laboratory.

The new partnership includes laboratory support from Exact Sciences, Marshfield Clinic Health System, UW Health, as well as Promega. These organizations, along with the Wisconsin Clinical Lab Network, are sharing knowledge, resources, and technology to bolster Wisconsin’s testing capacity. Our goal is to help labs find the quickest approach to the most tests with their validated methods.

Continue reading “Wisconsin’s Public-Private Partnership to Increase COVID-19 Testing Capacity”

10 Tips to Maintain Physical Distancing in the Lab

Laboratories can be crowded places. We are used to working around other people, tossing ideas back and forth. Dark rooms, cold rooms and large equipment spaces are often shared by several labs. Some labs have shut down completely in response to the COVID-19 pandemic; others, especially those labs doing research around coronavirus biology, testing and detection and drug development are running continually. For those labs, maintaining the recommended 6-foot (2m) distance to help stem the coronavirus pandemic isn’t easy.

At Promega our operations, quality assurance, applications and research and development labs are up and running—focused on providing as much support as possible to our partners who are studying, diagnosing and developing treatments for COVID-19.  At the same time, we are maximizing the safety of our employees. Here are a few ways we have found to maintain critical distances in our laboratory that might help your lab group stay productive and safe too.

Continue reading “10 Tips to Maintain Physical Distancing in the Lab”

How the SARS-CoV-2 Coronavirus Enters Host Cells and How To Block It

TE micrograph of a single MERS-CoV
Photo courtesy of National Institute of Allergy and Infectious Diseases

In December 2019, a new disease emerged from a seafood market in Wuhan, China. People who were infected began experiencing fever, dry cough, muscle aches and shortness of breath. The disease swept through China like wildfire and quickly spread overseas to almost every continent. We now know the virus that caused this disease, SARS-CoV-2, is a member of the severe acute respiratory syndrome coronavirus, and the disease itself was officially named COVID-19. According to the Johns Hopkins University Coronavirus Resource Center, there are 877,422 confirmed cases of COVID-19 worldwide, and 43,537 total deaths at the publication of this blog. Those numbers are only expected to increase over the next few weeks.

In this moment of crisis, scientists all around the world are desperately trying to find ways to treat and prevent the disease. One strategy for preventing the spread of the virus is to block its entry into human cells. But first we need to understand how SARS-CoV-2 enters human cells. A research group at the German Primate Center led by Dr. Stefan Pohlmann provides some answers in a recent publication in Cell.

Continue reading “How the SARS-CoV-2 Coronavirus Enters Host Cells and How To Block It”

RNA Extraction for Clinical Testing—Do Not Try this with Home-brew

This blog was written with much guidance from Jennifer Romanin, Senior Director IVD Operations and Global Service and Support, and Ron Wheeler, Senior Director, Quality Assurance and Regulatory Affairs at Promega.

A Trip Down Memory Lane

Back in the day when we all walked two miles uphill in the snow to get to our laboratories, RNA and DNA extraction were home-brew experiences. You made your own buffers, prepped your own columns and spent hours lysing cells, centrifuging samples, and collecting that fluorescing, ethidium bromide-stained band of RNA in the dark room from a tube suspended over a UV box. Just like master beer brewers tweak their protocols to produce better brews, you could tweak your methodology and become a “master isolater” of RNA. You might get mostly consistent results, but there was no guarantee that your protocol would work as well in the hands of a novice.

Enter the biotechnology companies with RNA and DNA isolation kits—kits and columns manufactured under highly controlled conditions delivering higher quality and reproducibility than your home-brew method. These systems have enabled us to design ever more sensitive downstream assays–assays that rely on high-quality input DNA and RNA, like RT-qPCR assays that can detect the presence of a specific RNA molecule on a swab containing only a few hundred cells. With these assays, contaminants from a home-brew isolation could result in false positives or false negatives or simply confused results. Reagents manufactured with pre-approved standard protocols in a highly controlled environment are critical for ultra sensitive tests and assays like the ones used to detect SARS-CoV-2 (the virus that causes COVID-19).

The Science of Manufacturing Tools for Scientists

There are several criteria that must be met if you are producing systems that will be sent to different laboratories, used by different people with variable skill sets, yet yield results that can be compared from lab to lab.

Continue reading “RNA Extraction for Clinical Testing—Do Not Try this with Home-brew”

Which Came First: The Virus or the Host?

They existed 3.5 billion years before humans evolved on Earth. They’re neither dead nor alive. Their genetic material is embedded in our own DNA, constituting close to 10% of the human genome. They can attack most forms of life on our planet, from bacteria to plants to animals. And yet, if it wasn’t for them, humans might never have existed.

3D structure of a coronavirus, viral evolution
A depiction of the shape of coronavirus as well as the cross-sectional view. The image shows the major elements including glycoproteins, viral envelope and helical RNA. This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

No, that’s not the blurb for a new Hollywood blockbuster, although recent developments have proven, once again, that truth is decidedly more bizarre than fiction. Now that “coronavirus” has become a household word, the level of interest in all things virus-related is growing at an unprecedented rate. At the time of writing, coronavirus and COVID-19 topics dominated search traffic on Google, as well as trends on social media. A recent FAQ on this blog addresses many of the questions we hear on these topics.

Continue reading “Which Came First: The Virus or the Host?”

Rapid Test to Detect SARS-CoV-2 Developed in Brazil

The Virology lab at the Universidade Federal da Bahia (UFBA), led by Dr. Gúbio Soares, has developed a fast and specific real-time PCR assay using GoTaq 1-Step RT-qPCR for detection of SARS-2-CoV (the coronavirus previously named 2019-nCoV), which causes the respiratory disease COVID-19. The Maxwell RSC instrument is used for automated extraction of RNA from oral-pharyngeal secretion collected by swab or bronchial wash prior to the assay. This coronavirus-specific assay can shorten the time to identify SARS-2-CoV from 48 hours to 3 hours (1), providing critical information to public health officials in a timely fashion.

“Promega has been providing all our reagents for standard and real-time PCR and also for nucleic acid extraction. It’s a company I can rely on the relationship; they are our partners and have provided excellent support both technically and financially. Promega is the base of all our assays.” Dr. Gúbio Soares.  

Dr. Soares’ laboratory has experience developing assays to identify and detect emerging viral pathogens. Their laboratory first identified the Zika virus as the etiologic agent in the large outbreaks of acute exanthematous illness (AEI) in northeast Brazil in April 2015 (2). Zika was eventually declared a public health emergency of international importance by the World Health Organization in February 2016, after increased incidence of microcephaly was detected in the infants of women infected during pregnancy. Many of the lessons learned in the management of the Zika crisis are informing how scientists are addressing SARS-2-CoV. The Zika response was characterized by a collaborative spirit to share data, samples and resources among scientific labs across the globe.

Below is a video link from Brazil (audio in Portuguese) describing Dr. Soares’ group work on SARS-2-CoV. https://globoplay.globo.com/v/8302334/

Sources Cited

  1. TV Bahia (2020) Test developed at UFBA can identify coronavirus in 3 hours, says researcher. [Internet: https://g1.globo.com/ba/bahia/noticia/2020/02/07/teste-desenvolvido-na-ufba-pode-identificar-coronavirus-em-3h-diz-pesquisador.ghtml Accessed: February 19, 2020]
  2. Sandler, N. (2016) Zika: Personal Perspectives, Global Responses Promega Corporation. [Internet: Accessed : February 19, 2020]

Related Posts

Investigation of Remdesivir as a Possible Treatment for SARS-CoV-2 (2019-nCoV)

Remdesivir (RDV or GS-5734) was used in the treatment of the first case of the SARS-CoV-2 (formerly 2019-nCoV ) in the United States (1). RDV is not an approved drug in any country but has been requested by a number of agencies worldwide to help combat the SARS-CoV-2 virus (2). RDV is an adenine nucleotide monophosphate analog demonstrated to inhibit Ebola virus replication (3). RDV is bioactivated to the triphosphate form within cells and acts as an alternative substrate for the replication-necessary RNA dependent RNA polymerase (RdRp). Incorporation of the analog results in early termination of the primer extension product resulting in the inhibition.

 Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. In this view, the protein particles E, S, M, and HE, also located on the outer surface of the particle, have all been labeled as well. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.
This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM CDC

Why all the interest in RDV as a treatment for SARS-CoV-2 ? Much of the interest in RDV is due to a series of studies performed by collaborating groups at the University of North Carolina Chapel Hill (Ralph S. Baric’s lab) and Vanderbilit University Medical Center (Mark R. Denison’s lab) in collaboration with Gilead Sciences. 

Continue reading “Investigation of Remdesivir as a Possible Treatment for SARS-CoV-2 (2019-nCoV)”

Working in the Lab to Save Animals in the Wild

Asian elephants with babies in Planckendael zoo, Muizen near Mechelen, Flanders, Belgium. Image copyright: Ad Meskens [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)] via Wikimedia Commons

Wildlife conservation is a major focus around the world. With habitat loss and climate change, Asian elephant populations are under severe pressure. Add in an infectious disease that is fatal to the young and you have a recipe for disaster. Even with efforts to breed the endangered Asian elephants in zoos to build the population, elephant endotheliotropic herpesvirus (EEHV) thwarts conservation efforts. EEHV causes hemorrhagic disease in Asian elephants younger than 10 years old, a disease with rapid onset and high mortality. In fact, some numbers indicate EEHV is the cause of death for at least 25% of Asian elephants born in zoos and the wild globally.

Continue reading “Working in the Lab to Save Animals in the Wild”

Go with Your Gut: Understanding How the Microbiome and Diet Influence Health

microbiome_mouse_model

Over the past decade, microbiome research has provided key insights into the relationship between our gut and our health. There are trillions of organisms in our gut, comprising the microbiome that complements our human biology, distinct from our genome. These gut microbes affect us in many ways, from affecting our mental health to our ability to fight cancer.

At the University of Wisconsin-Madison, Federico Rey and his research group are trying to understand how our diet might help or harm the important microbial communities in our gut. “If we can understand how microbes interact with diet, we can personalize nutrition to match diet with the composition of the gut microbiome and promote health,” Rey says.

Continue reading “Go with Your Gut: Understanding How the Microbiome and Diet Influence Health”