Water plays a vital role in countless aspects of daily life—drinking, cooling, recreation and more. However, the same systems that deliver these benefits can also harbor Legionella, a waterborne bacteria responsible for Legionnaires’ disease, a severe form of pneumonia1. Legionella thrives in stagnant aquatic environments, many of which are human-made and common in modern infrastructure, like in cooling towers, hot tubs and complex building water systems. In this blog, we explore the risks posed by Legionella, the limitations of traditional detection methods and how advanced tools at Promega are transforming water safety monitoring.
Continue reading “Understanding and Combating Legionella in Water Systems with Viability PCR”Microorganisms: Infectious Disease and Ecology
Blog entries about bacteria, viruses, fungi and other microorganisms.
Don’t Flush Your Kitty Litter! Toxoplasmosis Is a Growing Threat to Sea Otters and Other Marine Mammals
Southern sea otters (Enhydra lutris nereis), endangered marine mammals along California’s coastlines, are facing an unexpected threat. The menace comes not from pollution, habitat loss or natural predators, but from a microscopic enemy—Toxoplasma gondii (T. gondii). This protozoan parasite, typically associated with domestic cats, has found its way into marine ecosystems with sometimes deadly consequences for sea otters. Recently, scientists identified transmission of virulent, atypical strains of T. gondii from terrestrial felids to sea otters along the southern California coast, with lethal consequences (1).
Understanding T. gondii and Its Hosts
T. gondii is a versatile parasite that can infect nearly all warm-blooded animals, including humans and marine mammals. However, the T. gondii lifecycle depends upon felids (e.g., domestic cats and their wild relatives) who serve as definitive hosts. It is in their intestines that the parasite completes its sexual reproductive stage. The resulting oocysts are excreted in the animals’ feces. T. gondii oocysts exhibit remarkable resilience, surviving in soil, freshwater and seawater for extended periods. They are even resistant to standard wastewater treatment processes, which means oocysts in cat waste disposed of by flushing will pass through the treatment plant and be discharged into the environment. (2,3).
Oocysts can also be washed from soil contaminated with cat waste and carried via storm drains and rivers into the ocean, dispersing them into coastal waters. Once there, the oocysts settle on kelp or in sediments where they can be picked up by marine invertebrates like snails, mussels and clams. Marine mammals such as sea otters become infected when they consume these contaminated invertebrates. Otters can also ingest oocysts during grooming sessions (1,3).
Continue reading “Don’t Flush Your Kitty Litter! Toxoplasmosis Is a Growing Threat to Sea Otters and Other Marine Mammals”Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness
Since the COVID-19 pandemic, public health researchers and research scientists have sought more urgently to understand the worldwide respiratory virus landscape. The COVID-19 pandemic has forced us to re-evaluate our global public health priorities and activities. Additionally, acute respiratory tract infections are one of the leading causes of illness and death worldwide, particularly in developing countries. To really understand what changed with the pandemic and how we can best respond going forward, we need to understand what the baseline landscape was before the pandemic. Studies using samples that were collected prior to the pandemic are essential to this effort.
Continue reading “Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness”Tardigrade Proteins Might Solve the Cold Chain Problem for Biologics
Some of our most advanced medicines today rely on components derived from living organisms. These therapeutics, called biologics, include things like vaccines, blood products like Human Blood Clotting Factor VIII (FVIII), antibodies and stem cells. Biologics are incredibly temperature sensitive, which means they need to be kept cold during production, transport and storage, a process collectively called the cold chain. The stringent transport and storage temperature requirements for biologics create a barrier to accessing these lifesaving options; particularly for those in remote or underdeveloped regions, where maintaining a cold chain is logistically difficult and costly.
But what if we could break the cold chain? Inspired by one of the most resilient creatures on Earth – the tardigrade – scientists at the University of Wyoming are exploring ways to do just that.
Continue reading “Tardigrade Proteins Might Solve the Cold Chain Problem for Biologics”Extreme Makeover, Epidemic Edition: Can Ants Modify Their Nests for Survival?
Imagine if your first instinct during an epidemic wasn’t to wear a mask or stock up on groceries, but instead to start rearranging and remodeling your house. As it turns out, researchers have found that black garden ants (Lasius niger) do exactly that when confronted with the threat of disease. These tiny architects instinctively spring into action, redesigning their nests in various ways to slow the spread of infection and protect their crowded colonies where diseases can easily spread.
Read more about the research and see how these findings offer insights into how spatial changes – both in ants and potentially in human environments – can help limit the risks of infection.
Continue reading “Extreme Makeover, Epidemic Edition: Can Ants Modify Their Nests for Survival? “Mpox—The Latest Zoonotic Virus Making Headlines
Mpox (formerly known as Monkeypox; 1) has been making the news lately. The declaration by the WHO Director-General naming mpox a public health emergency of international concern (PHEIC; 2) has a lot of people wondering what it is, how it spreads and how concerned they should be. Understandably, we are all a little jumpy when we start hearing about a new viral disease, but the virus that causes mpox (monkeypox virus) isn’t new.
A member of the Poxviridae family, the monkeypox virus is closely related to the variola virus that causes smallpox; however, monkeypox causes milder symptoms and is less fatal (1). While the virus gained its unfortunate name from its discovery in monkeys in 1958 (3), the original source of the disease remains unknown. The virus exists in a wide range of mammals including rodents, anteaters, hedgehogs, prairie dogs, squirrels and shrews (4) and can spread to humans through close contact with an infected individual or animal. Symptoms can include fever, headache, muscle and back pain, swollen lymph nodes, chills and exhaustion (3). The most distinguishing symptom is the blister-like rash.
Continue reading “Mpox—The Latest Zoonotic Virus Making Headlines”Ancient Retroviruses and Modern Cancer: Role of Endogenous Retroviruses in Transcriptional Changes in Tumor Cells
Approximately 30 million years ago, a retrovirus integrated into the germline of a common ancestor of baboons, gorillas, chimpanzees and humans. That endogenous retrovirus, now known as gammaretrovirus human endogenous retrovirus 1 (HERV-1), may provide clues about the aberrant regulation of gene transcription that enables tumor cells to grow and survive.
Understanding the Mechanism Behind Cancer Gene Expression
Scientists have long described the striking differences in gene expression, signaling activity and metabolism between cancer cells and normal cells, but the underlying mechanisms that cause these differences are not fully understood. In a recent Science Advances article, published by Ivancevic et al., researchers from the University of Colorado, Boulder; the University of Colorado Anschutz Medical Campus, and the University of Colorado School of Medicine report their efforts to identify endogenous retrovirus elements that might be part of the answer to the complex question of what biological events are responsible for the changes in gene expression in cancer cells.
The researchers hypothesized that transposable elements (TEs), specifically those associated with endogenous retroviruses could be involved in cancer-specific gene regulation. Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections that have integrated into the germline of the host.
Identifying Endogenous Retrovirus Elements That Affect Cancer Gene Expression
Continue reading “Ancient Retroviruses and Modern Cancer: Role of Endogenous Retroviruses in Transcriptional Changes in Tumor Cells “Mind Control, Mutilation and Death. The Fungal Fate That Lurks in Waiting for Emerging Periodical Cicadas
For the first time since Thomas Jefferson was president, broods of 13- and 17-year periodical cicadas are emerging from the ground at the same time. The fate that awaits some of these periodic cicadas—a fungal infection that hijacks their behavior and destroys their genitalia — sounds like the script of a bad zombie horror film. The culprit (or villain) is the entomopathogenic fungus Massospora cicadina.
While most entomopathogens kill their host before releasing their infectious spores, M. cicadina is one of the few species that increase spore dispersal by hijacking their host’s behavior and keeping them alive while sporulating (1). The manner it uses to do this is both gruesome and fascinating. If you can stomach some details of insect sex and dismemberment, read on.
Continue reading “Mind Control, Mutilation and Death. The Fungal Fate That Lurks in Waiting for Emerging Periodical Cicadas”Measles and Immunosuppression—When Getting Well Means You Can Still Get Sick
In 2000 measles was officially declared eliminated in the United States (1), meaning there had been no disease transmission for over 12 months. Unfortunately it was not gone for good. So far in 2024 there have been 8 outbreaks and 131 cases. Ninety of these case (69%) are associated with an outbreak and seventy (53%) have resulted in hospitalization (as of May 2, 2024; 2).
Help in Limiting a Dangerous Childhood Disease
Before the development of a vaccine in the 1960s, measles was practically a childhood rite of passage. This common childhood disease is not without teeth however. One out of every 20 children with measles develops pneumonia, 1 out of every 1,000 develops encephalitis (swelling of the brain), and 1 to 3 of every 1,000 dies from respiratory and neurological complications (3). Between the years of 1958 and 1962, the US averaged 503,282 reported cases of measles (4). The first measles vaccine was licensed in the U.S. by John Enders in 1963, and not surprisingly, after the measles vaccine became widely used, the number of cases of measles plummeted. By 1970, there were under 1,000 cases (2).
Decreased Childhood Mortality from Other Infectious Diseases—An Unexpected Benefit
What was surprising was that with the disappearance of this childhood disease, the number of childhood deaths from all infectious diseases dropped dramatically. As vaccination programs were instituted in England and parts of Europe, the same phenomenon was observed. Reduction or elimination of measles-related illness and death alone can’t explain the size of the decrease in childhood mortality. Although measles infection is associated with suppression of the immune system that will make the host vulnerable to other infections, these side effects were assumed to be short lived. In reality, the drop in mortality from infectious diseases following vaccination for measles lasted for years, not months (5).
Continue reading “Measles and Immunosuppression—When Getting Well Means You Can Still Get Sick”Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus
In the Spring of 2015, greenhouse tomato plants grown in Jordan presented with a mosaic pattern of light and dark green patches on leaves, narrowing leaves, and yellow- and brown-spotted fruit (Salem et al. 2015). The pathogen was identified as a novel plant virus, the tomato brown rugose fruit virus (ToBRFV), and the original outbreak was traced back to the fall of 2014 to Israel (Luria et al. 2017). This newly emerging virus can infect tomato and pepper plants at any stage of development and greatly affect crop yield and quality. Furthermore, the virus spreads rapidly by mechanical contact but can also be spread over long distances by contaminated seeds (Caruso et al. 2022), and as of 2022 it had been detected in 35 countries across four continents (Zhang et al. 2022). Compounding its transmissibility, is the ability of the virus escape plant genetic resistance to viral infection (Zhang et al. 2022). There are seven host plants for the virus, including some common grasses and weeds, which could act as a reservoir for the virus, even if it is eliminated from commercial crops. Some researchers consider ToBRFV to be the most serious threat to tomato production in the world.
Continue reading “Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus “