Walter Blum knew how normal cells worked. He had studied and read about the pathways that regulated cell cycles, growth and development; he saw the cell as an amazingly well programmed, intricate machine. What he wanted to understand was: “Why does a cell become crazy? How does it escape immune system surveillance?”
Last week I had the opportunity to sit down with Dr. Blum, a customer of our Promega Switzerland branch. Dr. Blum won a trip to visit our campus in Madison for a week as part of an anniversary celebration for our Switzerland branch. While here, he got an inside peek at research and manufacturing operations, chatted with our scientists, met with our marketing teams and saw the sights in Madison. We talked about his work and what he learned and is taking back with him from his trip to Madison. Continue reading “Genes to Cells to Genomes: Where Will Your Research Questions Take You?”
It is summer here in Wisconsin and the kids are out of school. If you are like me, you are looking for things to keep them busy and (bonus!) maybe teach them something. Below is a list of relatively easy, do-at-home science projects that can be fun for the whole family to try.
Parental supervision is recommended/required for these. And if you don’t want to worry about major clean up (or repainting walls and ceilings) you might want to do these outside whenever possible. I might be speaking from personal experience on this point, so trust me.
This land is your land, this land is my land From California to the New York Island From the Redwood Forest, to the Gulf stream waters This land was made for you and me
–Woodie Guthrie
When my daughter was in preschool, she learned the lyrics to Woodie Guthrie’s folk song This Land Is Your Land. After one summer vacation, while she played in the Gulf stream waters off the coast of Florida, she asked, “Can we go see the Redwood Forest now?”
I had never seen the Redwood Forest, and my daughter’s request piqued my curiosity. I thought about my own childhood, when I had accompanied my older sister on a botany class project to collect plants and how curious I was about the plants and where they grew and what their names meant. Suddenly I wanted to see the Redwoods, and the Giant Sequoias.
It took a few years, but we managed to design a vacation trip that satisfied my daughter’s request to see the Redwood Forest and my growing curiosity, and I am so glad we did.
Science has been an important part of my life for a long time. One of my motivations for being a scientist was helping others. As scientists, there are many ways that we make a difference. For example, doing research that reveals information about basic biological processes can provide insight into how a disease might wreak havoc, and in turn facilitate drug design and effective disease treatments. I can say from experience that it’s especially rewarding to go beyond the impact of science to assist someone in the community face to face.
Just over 5 years ago, I started volunteering at the St. Vincent de Paul Madison Food Pantry, the largest in Dane County, Wisconsin, which serves an average of about 400 families per week1. The pantry uses a customer-choice model in which clients are allotted points to shop for food, allowing them to make selections that preserve their dignity and ethnic diversity. The food pantry has a small staff, so volunteers are vital to keep things running. I serve as a “host” to clients and assist them to shop around the pantry for the items that they need. It has been such a positive experience for me. In the grand scheme of things, I’m not changing the world, but I’m helping others get essential items to make ends meet for their family. Tough times can happen to anyone, and it takes a great deal of courage to ask for help. My goal is to make the experience for clients as positive as possible by being cheerful, courteous and respectful during their time at the pantry. If helping others can make one individual forget even for a moment that they have fallen on hard times, then I call that a win!
A desire to make a difference in the community through volunteerism is one of the characteristics that I really like about working at Promega. At a recent company meeting, employees were asked to share how they serve the community. Activities ranged from assisting those with disabilities to participate in athletic activities to taking care of shelter animals to starting a non-profit for children in need. There were many more! Employees are helping others in their local communities and even those across the globe from where they live. It was so inspiring to hear about my colleagues’ experiences of serving others.
Promega has a mechanism for employees to apply for time off to volunteer through the Promega in Action program.
There has been a lot of effort recently to perform whole genome sequencing, for humans and other species. The results yield new frontiers of data analysis that offer a lot of promise for groundbreaking scientific discoveries.
One objective of human genome sequencing has been to identify sources of disease and new therapeutic targets. This movement has opened the door to create personalized medicine for cancer, whereby the genetic makeup of an individual’s tumors can be used to determine the most effective drug intervention to administer.
Interest in studying the characteristics unique to individual cells seems obvious when considering the function of healthy cells versus tumor cells, or brain cells compared to heart cells. What has surprised scientists is the realization that two cells in the same tissue can be more different from each other, genetically, than from a cell in another organ.
For example, a small number of brain cells with a specific mutation can lead to some forms of epilepsy while healthy people may also carry cells with these mutations, but too few to cause disease. The lineage of a cell, where it came from and what events shaped its development, ultimately determines what diseases can exist.
Recently a FaceBook friend of mine (who is not a scientist) shared a video from WIRED Science where the concept of CRISPR is explained at 5 Levels of Difficulty— for a 7 year old, a teenager, a college student, a grad student and a CRISPR expert.
First it was pretty amazing to me that my non-scientist friends are interested enough in learning about CRISPR to share this type of information—perhaps showing just how popular and exciting the method has become. People outside the scientific field are hearing a lot about it, and are curious to know more.
This video does a great job of explaining the technique for all its intended audiences. It also is a nice illustration of how to share information in an easily understandable format. Even with the 7 year old and 14 year old, the information is shared in a conversational way, with everyone involved contributing to sharing information about CRISPR.
A report in the June 2, 2017 edition of Science magazine digs into findings from an ancient archaeological site on the very remote and very, very cold Zhokhov Island, to show that the locals, hardy human hunters, not only lived and worked with dogs, but also quite probably selectively bred the dogs for certain traits.
Archaeologist Vladmir Pitulko with the Russian Academy of Sciences has been excavating on Zhokhov Island since 1989, where he has found dog bones as well as remnants of wooden sleds. With archaezoologist Aleksey Kasparov, also of the RAS, they’ve compared two of the most complete dog skulls found to those of contemporary Siberian Huskies and wolves.
Pitulko and Kasparov wanted to first determine if the skulls were those of dogs or wolves. They first employed two key skull ratios: snout height to skull length and cranium height to skull length. Using these ratios, they were able to reliably distinguish between skulls of a modern wolf and husky.
Today’s blog comes to you from the Promega North America Branch Office.
In nature, the ability to “glow” is actually quite common. Bioluminescence, the chemical reaction involving the molecule luciferin, is a useful adaptation for many lifeforms. Fireflies, mushrooms and creatures of the ocean deep use their internal lightshows to cope with a variety of situations. Used for hunting, communicating, ridding cells of oxygen, and simply surviving in the darkness of the ocean depths, bioluminescence is one of nature’s more flashy, and advantageous traits.
In new research published in April in the journal Scientific Reports, MBARI researchers Séverine Martini and Steve Haddock found that three-quarters of all sea animals make their own light. The study reviewed 17 years of video from Monterey Bay, Calif in oceans that descended to 2.5 miles, to determine the commonality of bioluminescence in the deep waters.
Martini and Haddock’s observations concluded that 76 percent off all observed animals produced some light, including 97 to 99.7 cnidarians (jellyfish), half of fish, and most polychaetes (worms), cephalopods (squid), and crustaceans (shrimp).
Most of us are familiar with the fabled anglerfish, the menacing deep-sea creature known for attracting ignorant prey with a glowing lure attached to their head. As you descend below 200 meters, where light no longer penetrates, you will be surprised at the unexpected color display of the oceans’ sea life. Bioluminescence is not simply an exotic phenomenon, but an important ecological trait that the oceans’ sea creatures have wholeheartedly adopted to cope with complete darkness.
Have you ever walked on a beach and noticed that the waves seem to glow as they roll onto shore? Perhaps you have seen fish or jellyfish that glow in the dark, or maybe you’ve chased fireflies in your backyard or on a camping trip. These are all forms of luminescence (the production of light without adding heat), but the manner that these organisms produce their light can be quite different.
Earth Day, April 22, saw one of many of the marches on Washington, D.C. that 2017 has produced: The March for Science.
A march is a shout, a “Hey, over here, you need to hear this” one-time event. It is not a conversation. It really isn’t even action. It’s a start that requires follow up.
But how do you follow up a massive, organized march that happened across the globe? Consider following it up with little things, at every opportunity:
First, say “yes” to opportunities to be an ambassador for science. A neighbor asks, “Can you judge the science fair at our school?” Say, “yes”. Approach the task with a mind to encourage the students you meet, to get them engaged in conversations about their work—pointing out the good things they did, asking them how they could improve their work, asking what kind of problems these sorts of studies, conducted on a larger scale, might help solve. Maybe it’s only eight kids you talk to that day, maybe only one gets truly motivated to study science, but that is one more than if you didn’t go.
XWe use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To learn more about our approach to Privacy we invite you to Read More
By clicking “Accept All”, you consent to the use of ALL the cookies. However you may visit Cookie Settings to provide a controlled consent.
We use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To find out more about cookies and how to manage cookies, read our Cookie Policy.
If you are located in the EEA, the United Kingdom, or Switzerland, you can change your settings at any time by clicking Manage Cookie Consent in the footer of our website.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-advertisement
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
gdpr_status
6 months 2 days
This cookie is set by the provider Media.net. This cookie is used to check the status whether the user has accepted the cookie consent box. It also helps in not showing the cookie consent box upon re-entry to the website.
lang
This cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
SC_ANALYTICS_GLOBAL_COOKIE
10 years
This cookie is associated with Sitecore content and personalization. This cookie is used to identify the repeat visit from a single user. Sitecore will send a persistent session cookie to the web client.
vuid
2 years
This domain of this cookie is owned by Vimeo. This cookie is used by vimeo to collect tracking information. It sets a unique ID to embed videos to the website.
WMF-Last-Access
1 month 18 hours 24 minutes
This cookie is used to calculate unique devices accessing the website.
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
IDE
1 year 24 days
Used by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie
15 minutes
This cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
This cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
YSC
session
This cookies is set by Youtube and is used to track the views of embedded videos.
_gat_UA-62336821-1
1 minute
This is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.