Using Structural Computation Models to Predict Productive PROTAC Ternary Complexes

With use and time things wear out. Tires get worn on a car, and you have the old tires removed, recycled, and replaced with new ones. Sometimes a part or piece of something isn’t made properly. For instance, if you are assembling a piece of furniture and you find a screw with no threads, you throw it out and get a screw that was made properly. The same thing holds true for cells. Components wear out (like tires) or get improperly made (a screw with no threads), or they simply have a limited lifetime so that they are available in the cell only when needed. These used and worn components need to be removed from the cell. One system that allows cells to recycle components and remove old or improperly functioning proteins is the Ubiquitin-Proteasome System (UPS).  The UPS system relies on a series of small peptide tags, ubiquitin, to mark a protein for degradation. Researchers are now harnessing the UPS to target aberrant proteins in diseased cells through PROteolysis TArgeting Chimeras or PROTACs. PROTACs hold promise as highly efficacious therapeutics that can be directed to eliminate only a single protein. To take full advantage of the power of PROTACs, researchers need to understand the molecular underpinnings that are responsible for successful protein degradation. Here we review a paper that seeks to develop a computer model for predicting whether PROTAC ternary complex formation leads to ubiquitination and successful degradation of a target protein.

Diagram of ubiquitination of a protein. ThePROTAC ternary complex is formed the E2/E3 complex, PROTAC and target protein are bound simultaneously
Proteins are targeted for degradation by the proteasome. A small chain of ubiquitin peptides (Ub) is added to available lysine residues of the target protein through the actions of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3 ubiquitin ligase. After the addition of the Ub chain, the proteasome is recruited and the protein degraded.

Addressing the Intractable Target

Research to understand diseases including cancers, neurodegeneration, and auto-immune conditions has revealed that in many disease states, affected cells produce growth factors or enzymes that are constitutively active (“always on”). These proteins are targets for small molecule inhibitors that bind specific sites preventing the constitutive activity or signaling. More recently, biologics, or protein-based therapeutics, including monoclonal antibodies (mAb), have been developed that can bind and block inappropriate signaling pathways, especially those that allow cancer cells to escape immune system surveillance.

Unfortunately, up to 85% of targets have proven intractable to small molecule inhibitors, or they are not suitable for a biologics approach. Oftentimes, the target protein doesn’t have a great place to bind a small molecule, so even though inhibitors might exist they cannot bind well enough to be effective. Or, as in the case of many cancers, the diseased cell manages to overcome the effect of the inhibitor by overexpressing the target. Still other aberrant proteins associated with diseases haven’t gained function to cause a disease; they have instead, lost function, so designing an inhibitor of the protein is not a workable strategy.  Enter the PROTAC.

Continue reading “Using Structural Computation Models to Predict Productive PROTAC Ternary Complexes”

GPCRs and PROTACs: New Approaches for Designing More Effective Drug Candidates

NanoBRET target engagement assay

G protein-coupled receptors (GPCRs) comprise a large group of cell surface receptors, characterized by the unique structural property of crossing the cell membrane seven times. They respond to a diverse group of signaling molecules, such as peptides, neurotransmitters, cytokines, hormones and other small molecules (1). Upon activation, GPCRs interact with GTP-binding (G) proteins and arrestins to regulate a wide variety of signaling pathways. This broad range of functions makes GPCRs attractive targets for drug discovery. The importance of GPCR research was highlighted in 2012, with the Nobel Prize in chemistry being awarded to Robert Lefkowitz and Brian Kobilka “for studies of G-protein–coupled receptors”.

Based on structure and function, GPCRs are categorized into six classes, A–F. The class A GPCRs, or rhodopsin-like receptors, have been studied extensively due to their association with many types of diseases (2). Within the class A GPCRs is a group that share a highly conserved structural motif (3) and respond to chemokines—small “chemotactic cytokines” that stimulate cell migration, especially that of white blood cells (4). A subfamily of class A GPCRs respond to chemokines that have two cysteine residues near the N-terminus, known as CC chemokines. GPCRs activated by CC chemokines are called CC chemokine receptors or CCRs, and these interactions have been implicated in both pro- and anti-cancer pathways (5).

Continue reading “GPCRs and PROTACs: New Approaches for Designing More Effective Drug Candidates”

New Study Suggests Long Mononucleotide Repeat Markers Offer Advantages for Detecting Microsatellite Instability in Multiple Cancers

A new study, published in the Journal of Molecular Diagnostics (1), highlights the potential of using long mononucleotide repeat (LMR) markers for characterizing microsatellite instability (MSI) in several tumor types. The paper is a result of a collaborative effort between researchers from Johns Hopkins University and Promega to evaluate the performance of a panel of novel LMR markers for determining MSI status of colorectal, endometrial and prostate tumor samples.

Microsatellite instability (MSI) is the accumulation of insertion or deletion errors at microsatellites, which are short tandem repeats of DNA sequences found throughout the genome. MSI in cancerous cells is the result of a functional deficiency within one or more major DNA mismatch repair proteins (dMMR). PCR-based MSI testing is a commonly used method that can help understand a tumor’s genomic profile as it relates to MMR protein function.

Historically, MSI has been a biomarker associated with Lynch syndrome, the hereditary predisposition to colorectal and certain other cancers. In recent years, research interest in MSI has exploded, driven by the discovery that its presence in tumor tissue can be predictive of a positive response to anti-PD-1 immunotherapies (2,3).

Continue reading “New Study Suggests Long Mononucleotide Repeat Markers Offer Advantages for Detecting Microsatellite Instability in Multiple Cancers”

COVID-19 Antiviral Therapies: What Are the New Drugs, and How Do They Work?

We’re entering the third year of the global COVID-19 pandemic, and it’s far from over. There has been considerable progress with SARS-CoV-2 vaccine development, with most of the focus on mRNA vaccines and adenoviral vector vaccines. Meanwhile, novel vaccine delivery systems are being tested among efforts to develop a “pan-coronavirus” vaccine that is effective against multiple variants. One such example is ferritin nanoparticle technology developed by researchers at the Walter Reed Army Institute of Research and their collaborators. Encouraging results from nonhuman primate studies, using several SARS-CoV-2 antigens, were published in 2021 (1–3).

New COVID-19 antiviral therapies offer promise, but further data are needed before they become widely available.

The current surge in COVID-19 cases that began last month is largely due to the Omicron variant in the US, according to data from the US Centers for Disease Control and Prevention (CDC). At present, we still don’t know enough about this variant, but it’s clear that its rapid spread is forcing us to re-examine what we know about SARS-CoV-2 (4). As the virus continues to mutate, new variants will continue to emerge and spread. Although current vaccines can provide protection against multiple variants, breakthrough infections are a concern. Vaccination is still the best option to reduce the risk of infection, hospitalization, and death compared to unvaccinated people.

It’s clear that vaccines are only part of an effective response to fighting the pandemic. Along with continued vaccine development efforts, attention must also be given to antiviral drug development for people already infected with COVID-19. Due to the lengthy process for new drug development, early efforts focused on repurposing existing drugs.

Continue reading “COVID-19 Antiviral Therapies: What Are the New Drugs, and How Do They Work?”

MISpheroID: A Knowledgebase to Improve Reproducibility in Spheroid Research

Spheroid research is  now a common component of cell biology and drug discovery science

Advantages of Spheroids

In the past decade, there has been a sharp rise in studies using spheroids as cell models for basic research and drug discovery. Spheroids are self-organized aggregation of cells that form a spherical mass, and they have become widely popular because they are much more physiologically relevant compared to flat 2D cell cultures.

In spheroids, the inner cells have less access to nutrients and oxygen compared to the outer layer, forming a natural gradient. As a result, metabolite concentration and cellular state such as proliferation and differentiation, can be very different at the periphery compared to the inner core. This phenomenon, known as “heterogeneity”, makes 3D tumor spheroids much more representative of actual tumors in the human body.

Continue reading “MISpheroID: A Knowledgebase to Improve Reproducibility in Spheroid Research”

Total Eclipse of the CAR T: How mRNA Vaccine Technology Can Be Used to Help Heal “Broken” Hearts

While you can rely on Taylor Swift and Adele to help heal emotional heartbreak, unfortunately treating a physically “broken” heart, a heart damaged by fibrosis, is a much more complicated process than putting on your favorite sad songs and wallowing in your feelings. In a recent study published in Science, researchers developed a therapeutic approach to treat damaged hearts in mice through the removal of scar tissue using genetically engineered immune cells (CAR T cells) and the mRNA technology used in the mRNA coronavirus vaccines.

Genetically engineered CAR T cells have been used l for repairing damaged hearts in mice
Continue reading “Total Eclipse of the CAR T: How mRNA Vaccine Technology Can Be Used to Help Heal “Broken” Hearts”

Kicking Off the New Year with Three Popular Plant Papers

It’s officially 2022, Happy belated New Year! A lot of amazing research is trending in science news right now. In particular, take a look at three plant-related papers that discuss interesting research and advancements in plant science.

Continue reading “Kicking Off the New Year with Three Popular Plant Papers”

Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection

Research in animal models shows physical exercise can induce changes in the brain. In humans, studies also revealed changes in brain physiology and function resulting from physical exercise, including increased hippocampal and cognitive performance (1). Several studies in mice and rats also demonstrated that exercise can improve learning and memory and decrease neuroinflammation in models of Alzheimer’s disease and other neurodegenerative pathologies (2); these benefits are tied to increased plasticity and decreased inflammation in the hippocampus in mice (2). If regular time pounding the pavement does improve brain function, what is the underlying molecular biology of exercise-induced neuroprotection? Can we identify the cellular pathways and components involved? Can we detect important components in blood plasma? And, is the benefit of these components transferrable between organisms? De Miguel and colleagues set out to answer these questions and describe their results in a recent study published in Nature.

A recent study investigates the underlying molecular mechanisms of exercise-induced neuroprotection in a mouse model.
Continue reading “Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection”

COVID-19 Intranasal Vaccines Revisited: Can They Reduce Breakthrough Infections?

COVID-19 cases are now being identified primarily among unvaccinated individuals, according to data from the US Centers for Disease Control and Prevention (CDC). However, there has been increasing concern about so-called breakthrough infections among fully vaccinated individuals, particularly after the emergence of the SARS-CoV-2 Delta variant.

COVID-19, sars-cov-2

What is a breakthrough infection? The CDC defines it as “the infection of a fully vaccinated person.” The key finding remains that people with breakthrough infections are still far less likely to experience severe COVID-19 symptoms, in contrast with unvaccinated people; hence the importance of vaccination.

Continue reading “COVID-19 Intranasal Vaccines Revisited: Can They Reduce Breakthrough Infections?”

There’s a Microbiome In My Tank!

Imagine a scenario—you’re studying the developmental biology of a species of squid. The squid don’t reproduce in captivity, so females carrying fertilized eggs are collected from the wild and rehomed in your lab’s aquariums. You’ve monitored all the normal aquarium conditions—pH, temperature, salinity—ensuring the animal’s new home mimics its natural environment.

But then, for no reason apparent to you, the clutch of eggs doesn’t develop and doesn’t hatch, derailing your research program until next year when you can collect more adult squid from the wild. What went wrong?

Continue reading “There’s a Microbiome In My Tank!”