Measles and Immunosuppression—When Getting Well Means You Can Still Get Sick

26062330-March-7-Kelly-600x900-WEB

In 2000 measles was officially declared eliminated in the United States (1), meaning there had been no disease transmission for over 12 months. Unfortunately, recent years have shown us it was not gone for good. So far in 2025 there have been 6 outbreaks and 607 cases. Five hundred and sixty-seven of these cases (93%) are associated with an outbreak; seventy-four (12%) cases have resulted in hospitalization, and there has been one confirmed death, with another death under investigation (as of April 3, 2025; 2).  For comparison, there were two hundred and eighty-five total cases in 2024; one hundred and ninety-eight (69%) were associated with outbreaks; one hundred and fourteen (40%) cases resulted in hospitalization. There were no deaths (2).  

Help in Limiting a Dangerous Childhood Disease

Before the development of a vaccine in the 1960s, measles was practically a childhood rite of passage. This common childhood disease is not without teeth however. One out of every 20 children with measles develops pneumonia, 1 out of every 1,000 develops encephalitis (swelling of the brain), and 1 to 3 of every 1,000 dies from respiratory and neurological complications (3). In the years before a vaccine was available, it is estimated that there were between 3.5 and 5 million measles cases per year. (4). The first measles vaccine was licensed in the U.S. by John Enders in 1963, and not surprisingly, after the measles vaccine became widely used, the number of cases of measles plummeted. By 1970, there were under 1,000 cases (2).

Decreased Childhood Mortality from Other Infectious Diseases—An Unexpected Benefit

Surprisingly, with the disappearance of this childhood disease the number of childhood deaths from all infectious diseases dropped dramatically. As vaccination programs were instituted in England and parts of Europe, the same phenomenon was observed. Reduction or elimination of measles-related illness and death alone can’t explain the size of the decrease in childhood mortality. Although measles infection is associated with suppression of the immune system that will make the host vulnerable to other infections, these side effects were assumed to be short lived. In reality, the drop in mortality from infectious diseases following vaccination for measles lasted for years, not months (5).

Continue reading “Measles and Immunosuppression—When Getting Well Means You Can Still Get Sick”

Advancing Neurodegenerative Disease Modeling: A Novel iPSC-Based Luminescence System for Parkinson’s Disease Research

Advancing our understanding of neurodegenerative diseases requires model systems that faithfully recapitulate the biology of human neurons. A recent study by Gandy et al. in the International Journal of Molecular Sciences introduces an innovative luminescence-based platform to explore the role of Parkinson’s disease (PD)-associated genes in living cells. By leveraging human induced pluripotent stem cells (iPSCs) and CRISPR-mediated endogenous tagging, researchers at the Early Drug Discovery Unit at The Neuro (Montreal Neurological Institute-Hospital) at McGill University and Health Canada have created a powerful system for investigating protein expression and function in a physiologically relevant setting.

Continue reading “Advancing Neurodegenerative Disease Modeling: A Novel iPSC-Based Luminescence System for Parkinson’s Disease Research”

An Unexpected Role for RNA Methylation in Mitosis Leads to New Understanding of Neurodevelopmental Disorders

Traditionally, RNA methylation has been studied in the context of gene expression regulation, RNA stability and translation efficiency, with its primary role thought to be in modulating cellular homeostasis and protein synthesis. However, a 2025 study by Dharmadkikari and colleagues uncovers an unexpected and critical function for RNA methylation in mitotic spindle integrity.

False color transmission electron microscope (TEM) micrograph of a mitotic cell in metaphase stage showing chromosomes (purple) in the equatorial plane and one of the mitotic spindle poles (blue). Mutations in SPOUT1/CENP-32 affect RNA methylation which is necessary for proper cell division.
False color transmission electron microscope (TEM) micrograph of a mitotic cell in metaphase stage showing chromosomes (purple) in the equatorial plane and one of the mitotic spindle poles (blue).

The study identifies a critical role for SPOUT1/CENP-32-dependent methylation in mitotic spindle formation and accurate chromosome segregation. Originally identified in a large-scale analysis of proteins associated with mitotic chromosomes, SPOUT1/CENP-32 encodes a putative RNA methyltransferase. The protein localizes to mitotic spindles, and when it is absent centrosome detachment from the spindle poles, delayed anaphase, and chromosome segregation errors are observed. Further, CRISPR experiments in human cells show that the protein is essential for cell viability.

Continue reading “An Unexpected Role for RNA Methylation in Mitosis Leads to New Understanding of Neurodevelopmental Disorders”

Microfluidic Organoids Could Revolutionize Breast Cancer Treatment

Breast cancer is the most common tumor among women worldwide and has a profound impact on individuals and society. Aside from being a leading cause of cancer-related death, patients often undergo invasive treatments such as surgery, radiation, and chemotherapy, which may result in long-term side effects and reduced quality of life. Additionally, the healthcare burden of breast cancer is immense. This makes effective, timely, and personalized treatments a critical need.

A recent study published in Scientific Reports presents a microfluidic-based method for growing breast cancer organoids that significantly reduces the culture time while maintaining essential structural and drug response characteristics. This method could be the key to developing personalized breast cancer treatments in the future.

Continue reading “Microfluidic Organoids Could Revolutionize Breast Cancer Treatment”

Alzheimer Disease and Metabolic Dysfunction: A Critical Intersection in Brain Health

This guest blog post is written by Alden Little, a Marketing Intern at Promega.

Alzheimer disease (AD) is one of the most devastating neurodegenerative disorders, affecting millions worldwide. While much attention has been given to amyloid plaques and tau tangles, emerging research suggests that metabolic dysfunction in the brain plays a crucial role in the disease’s progression. A recent study published in Acta Neuropathologica by Schröder et al. sheds new light on how astrocytes—the brain’s metabolic support cells—are affected in AD, and how their dysfunction impacts neurons.

Auguste Deter, a patient of Dr. Alzheimer, who first described the hallmark plaques and tangles of AD.
Continue reading “Alzheimer Disease and Metabolic Dysfunction: A Critical Intersection in Brain Health”

Reprogramming T Cells with DCA: A Metabolic Breakthrough

T cell-based immunotherapies, including CAR-T and TCR-T therapies, have transformed cancer treatment.

T cell-based immunotherapies, including CAR-T and TCR-T therapies, have transformed cancer treatment. T cells are a type of white blood cell that plays a central role in the immune system, recognizing and eliminating abnormal or infected cells. These therapies train T cells to attack tumors; however, a major hurdle remains: most lab-grown T cells fail to persist after an infusion in a patient. Despite transferring millions of tumor-targeting cells, many quickly die off, limiting their effectiveness inside the body. But why?

Continue reading “Reprogramming T Cells with DCA: A Metabolic Breakthrough”

Bacteria From Insect Guts Could Help Degrade Plastic

For the past few decades, plastic pollution has become a serious environmental challenge. Plastic production has continued to increase and there are a variety of plastic polymer types available. Polystyrene (PS) is one of the most widely used plastics due to its durability, strength, and low cost. However, the qualities that make this plastic valuable also make it highly resistant to degradation.

Continue reading “Bacteria From Insect Guts Could Help Degrade Plastic”

A Diabetes Drug, Metformin, Slows Aging in Male Monkeys

Aging is a natural process that occurs in all living creatures, seemingly inevitable and inescapable. Yet, it is a collective dream of humanity to somehow avoid the deterioration caused by old age, including declining brain function, chronic illnesses, and organ failure. For decades, scientists have been exploring ways to slow down the aging process in the hope of extending lifespans and improving the quality of life. Now, we may be closer than ever to finding an answer. It’s called “metformin”.

Continue reading “A Diabetes Drug, Metformin, Slows Aging in Male Monkeys”

Unlocking the Secrets of ADP-Ribosylation with Arg-C Ultra Protease, a Key Enzyme for Studying Ester-Linked Protein Modifications 

Post-translational modifications of proteins are critical for proper protein function. Modifications such as phosphorylation/dephosphorylation can act as switches that activate or inactivate proteins in signaling cascades. The addition of specific sugars to membrane proteins on cells are critical for recognition, interaction with the extracellular matrix and other activities. While we know volumes about some types of protein modifications, ADP-ribosylation on aspartate and glutamate residues has been more difficult to study because of the chemical instability of these ester-linked modifications. 

Matić Lab (Eduardo José Longarini and Ivan Matić) recently published a study that explored mono-ADP-ribosylation (ADPr) on aspartate and glutamate residues by the protein PARP1 and its potential reversal by PARG. PARP1 and PARG signaling are central to DNA repair and apoptosis pathways, making them potentially powerful therapeutic targets in cancer or neurodegenerative diseases in which DNA repair processes are often disrupted. 

Continue reading “Unlocking the Secrets of ADP-Ribosylation with Arg-C Ultra Protease, a Key Enzyme for Studying Ester-Linked Protein Modifications “

Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness

influenza viruses are part of the worldwide respiratory virus landscape

Since the COVID-19 pandemic, public health researchers and research scientists have sought more urgently to understand the worldwide respiratory virus landscape. The COVID-19 pandemic has forced us to re-evaluate our global public health priorities and activities. Additionally, acute respiratory tract infections are one of the leading causes of illness and death worldwide, particularly in developing countries. To really understand what changed with the pandemic and how we can best respond going forward, we need to understand what the baseline landscape was before the pandemic. Studies using samples that were collected prior to the pandemic are essential to this effort.

Continue reading “Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness”