Comparing Methods for Detecting SARS-CoV-2 in Wastewater

Image of coronavirus superimposed over laboratory tech performing an experiment. Methods for detecting SARS-CoV-2 in wastewater are becoming standardized.

Wastewater surveillance of SARS-CoV-2 is an increasingly common method for monitoring the spread of COVID-19 within a community. As researchers and public health officials around the world are working together to set up wastewater surveillance systems, there is an urgent need to establish standard SARS-CoV-2 detection methods.

A key leader in this new field is Dr. Gloria Sanchez. She is a tenured scientist at the Institute of Agrochemistry and Food Technology, a center within the Spanish National Research Council. Before the COVID-19 pandemic, her team focused on detecting human enteric viruses in food and water. But soon, detecting SARS-CoV-2 in wastewater became their main focus.

Continue reading “Comparing Methods for Detecting SARS-CoV-2 in Wastewater”

Measuring Changing Metabolism in Cancer Cells

Because of the central role of energy metabolism in health and disease, and its effect on other cellular processes, assays to monitor changes in cellular metabolic state have wide application in both basic research and drug discovery. In the webinar “Tools for Cell Metabolism: Bioluminescent NAD(P)/NAD(P)H-Glo™ Assays” Jolanta Vidurigiene, a Senior Research Scientist at Promega, introduces three metabolism assays for measuring oxidized and reduced forms of NAD and NADP.

In this webinar, Jolanta provides background information on why it is important to be able to accurately measure metabolites such as NAD/NADH and NADP/NADPH. She outlines the roles of each, and highlights some of the challenges involved in developing assays that can accurately measure these metabolites. She discusses key considerations for successful NAD(P)/NAD(P)H assays and provides examples of how to use these assays to measure either total (both oxidized and reduced) forms of NAD and NADP, or to measure oxidized and reduced forms individually in a single assay plate.

NAD(P)H-Glo™ Assay Mechanism
NAD(P)H-Glo™ Assay Mechanism

Continue reading “Measuring Changing Metabolism in Cancer Cells”

Directed Targeted Protein Degradation with Pre-Built HiBiT Cell Lines

Recently, selectively targeting proteins for degradation using the cell’s natural ubiquitin proteasome pathway (UPS) has surfaced as an effective strategy to bypass difficult-to-drug proteins related to diseases like cancer. Using sensitive bioluminescence technology, CRISPR-edited cell lines can facilitate studying popular protein degradation targets.

Woman at lab bench and artist 3D rendering of directed targeted protein degradation in a HiBiT cell line

NanoLuc® Luciferase (NLuc) has made biology more accessible than ever (1). Further experimentation with NLuc led to creation of a protein complementation system (2) and the discovery of the HiBiT bioluminescent peptide. HiBiT combines spontaneously with the engineered complementary subunit LgBiT to yield an active luciferase called NanoBiT® Luciferase.

Continue reading “Directed Targeted Protein Degradation with Pre-Built HiBiT Cell Lines”

There’s a Vaccine for That—Could mRNA Vaccines be Used to Prevent Cancer Recurrence?

mRNA vaccines came roaring onto the public stage in 2020. In the United States and Europe, two of the vaccines that are being used against the SARS-CoV-2 virus are mRNA vaccines. The scientific community has been talking about the potential of this technology against infectious diseases as well as cancer for several years, but no one thought that the first mRNA vaccines would make such a huge, and public, debut.

One big benefit of mRNA vaccines is the speed at which they can be developed. mRNA vaccines use messenger RNA particles to teach our cells to make a bit of protein, which then triggers our body’s immune response, and it is relatively easy to synthesize large amounts of mRNA in a laboratory. As promising as this sounds for infectious diseases, the application of mRNA vaccines for oncology might be even more exciting.

Could mRNA vaccines be used for personalized cancer vaccines?
Continue reading “There’s a Vaccine for That—Could mRNA Vaccines be Used to Prevent Cancer Recurrence?”

The Wild Genomes Program: Optimizing Conservation Outcomes Using Genomics

Although it is easy to get swept up in the dark year that was 2020, one advantage of overwhelming darkness is it makes it easier to find the bright spots, the beacons of hope, the people working to make the world a better place. One of these bright spots was the launch of Wild Genomes, a new biobanking and genome sequencing program through Revive & Restore.

Back in 2018, the Catalyst Science Fund was established by Revive & Restore with a 3-year pledge from Promega for $1 million annually. The purpose of the fund is to help support proof-of-concept projects and to advance the development of new biotechnology tools to address some of the most challenging and urgent problems in conservation that currently lack viable solutions, including genetic bottlenecks, invasive species, climate change and wildlife diseases. 

Through this fund, the Wild Genomes program was launched, with the goal of getting sequencing and biobanking tools into the hands of people working to protect biodiversity right now, and to help support them in applying genomic technologies towards their wildlife conservation efforts.

In their first request for proposals , the competitive Wild Genomes program received over 58 applications from researchers in 19 different countries, all of which aimed to address various species conservation issues using applied genomic technologies. The second round of projects, to be announced this Spring, will focus solely on marine species. Take a look at these first 11 amazing projects that have been awarded funding and the species conservation challenges they are taking on below:

Continue reading “The Wild Genomes Program: Optimizing Conservation Outcomes Using Genomics”

Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging

What is the Developmental Clock?

The development of the human embryo is a complicated process that involves careful coordination of thousands of genes. Just like musical instruments in an orchestra, each gene performs its role—sometimes silent, sometimes intense—but always right on cue. The tempo of the symphony, or the speed of embryonic development, depends on an intrinsic biological clock known as the developmental clock. The developmental clock is like the conductor of the orchestra, controlling the tempo of the music and ensuring that each gene is expressed at the right moment with the right intensity. If just one gene is expressed too soon or going one beat too fast, it could disrupt the harmony of the whole symphony, resulting in an improperly developed embryo.

One example of what could happen when the developmental clock is disrupted is a disease called spondylocostal dysostosis (SCDO). SCDO is a genetic disorder that causes abnormal formation of the spine and ribs. Patients often have a short neck and trunk, and an abnormal curvature in the spine (scoliosis). SCDO can be caused by a mutation in the HES7 gene. HES7 is an “oscillating gene”, a kind of gene that is expressed in a rhythmic pattern—like the beating of a drum. This rhythm is essential for forming our ribs and each vertebra of our spine—a process known as “segmentation”—during early embryonic development.

Continue reading “Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging”

Oh, The Ways You Can “Glo”

Here at Promega, we have been helping your experiments “Glo” for 30 years by utilizing the sensitivity and wide dynamic range of bioluminescence detection methods. However, we’ve found that many scientists are still more familiar with older techniques like colorimetric or fluorometric detection than with luminescence. This anniversary year we are taking stock of all the assays and applications made possible with luminescence technologies. Check out our 30 Years and Glo-ing Celebration to learn more about how we’re celebrating luminescent assays and technologies this year.

Continue reading “Oh, The Ways You Can “Glo””

Buckling Down to Scale Up: Providing Support Through the Pandemic

The past year has been a challenge. Amidst the pandemic, we’re thankful for the tireless work of our dedicated employees. With their support, we have continuously stayed engaged and prepared during all stages of the COVID-19 pandemic so that we can serve our customers at the highest levels.

How We Got Here

The persistent work by our teams has made a great impact on the support we can provide for scientists and our community during the pandemic. From scaling up manufacturing to investing in new automation, every effort has helped.

Promega has a long history of manufacturing reagents, assays, and benchtop instruments for both researching and testing viruses. When the pandemic began in 2020, we responded quickly and efficiently to unprecedented demands. In the past year, we experienced an approximately 10-fold increase in demand for finished catalog and custom products for COVID-19 testing. In response to these demands, we increased production lines. One year ago, we ran one shift five days per week. Currently, we run three shifts seven days per week. This change has allowed 50 different Promega products to support SARS-CoV-2 testing globally in hospitals, clinical diagnostic laboratories, and molecular diagnostic manufacturers. Additionally, our clinical diagnostics materials make up about 2/3 of COVID-19 PCR tests on the global market today. Since January 2020, Promega has supplied enough reagents to enable testing an estimated 700 million samples for SARS-CoV-2 worldwide.

Developments and Advances

Promega products are used in viral and vaccine research. This year, our technologies have been leveraged for virtually every step of pandemic response from understanding SARS-CoV-2 to testing to research studies looking at vaccine response.

Promega product: The Lumit™ Dx SARS-CoV-2 Immunoassay

Who Got Us Here

We are extremely grateful for our employees. In the past year, we hired over 100 people and still have positions open today. While welcoming newcomers, this challenging year also reinforced the importance of our collaborative culture. Relationships at Promega have been built over multiple years. The long history of our teams allows us to stay coordinated while prioritizing product distribution to customers across the globe. It also leads to effective communication with colleagues and vendors. Those leading our manufacturing operations team, for example, have an average tenure of 15 years. Their history in collaborating through challenging situations helps them quickly focus where needed most.

Our 600 on-site employees support product manufacturing, quality, and R&D. They do it all while remaining COVID-conscious by social distancing, wearing masks, working split shifts, and restricting movement between buildings. While we continue to practice physical safety precautions, we also prioritize our employees’ mental health and wellness. Promega provides a variety of wellness resources including phone and video mental health sessions, virtual fitness and nutrition classes, and stress and anxiety tools.

What’s to Come

While we acknowledge that the COVID-19 is not over, we are proud of the support we have been able to provide to customers working both on pandemic research and critical research not related to COVID-19. Our policies of long-term planning and investing in the future has allowed us to respond quickly and creatively and learn from the experience.


Related Posts

New Evidence Suggests COVID-19 Variant B.1.1.7 Is Susceptible to Vaccines

New evidence suggests that vaccines may be effective against the COVID-19 variant B.1.1.7.

New variants of COVID-19 are causing global concern. Mutations in the viral genome can affect its transmissibility and pathogenicity, and structural changes to the spike protein could reduce the effectiveness of some of the vaccines that are being distributed in several countries. A new preprint available on bioRxiv suggests that the COVID-19 variant B.1.1.7, which was first documented in the United Kingdom, is still susceptible to the neutralizing antibodies produced in response to several vaccines, including the Moderna mRNA-1273 and the Novavax NVX-CoV2373.

Continue reading “New Evidence Suggests COVID-19 Variant B.1.1.7 Is Susceptible to Vaccines”