Can Fungi Help Clean Up Environmental Contaminants? 

Fly agaric or Fly amanita (Amanita muscaria) is a basidiomycete of the genus Amanita.

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants found in industrial waste, fossil fuel combustion and creosote-treated wood, to name a few. Due to these industrial activities, there are multiple pathways for human exposure. These compounds pose significant health risks due to their carcinogenic, teratogenic and mutagenic properties yet removing them from contaminated sites remains a challenge. Traditional remediation techniques, such as dredging and chemical treatment, are costly and can further disrupt ecosystems (1).  

Mycoremediation—using fungi to break down pollutants into intermediates with lower environmental burden—offers a sustainable, low-cost alternative for PAH degradation. While past research focused on basidiomycete fungi like white rot fungi, these have been unreliable in large-scale field applications. This study investigates an alternative approach: leveraging naturally occurring ascomycete fungi from creosote-contaminated sediments to enhance PAH degradation (1). 

Continue reading “Can Fungi Help Clean Up Environmental Contaminants? “

No More Dead Ends: Improving Legionella Testing with Viability qPCR

Image of cooling towers.

Legionella is the causative agent of Legionnaires’ disease, a severe form of pneumonia with a mortality rate of around 10%​. Contaminated water systems, including cooling towers and hot water systems, serve as primary reservoirs for this opportunistic pathogen. Traditional plate culture methods remain the regulatory standard for monitoring Legionella, but these methods are slow—often requiring 7–10 days for results—and suffer from overgrowth by non-Legionella bacteria​. Additionally, traditional methods fail to detect viable but non-culturable (VBNC) bacteria—cells that remain infectious but do not grow on standard culture media. 

Molecular methods like PCR-based detection provide faster and more sensitive Legionella identification. However, a key limitation persists: PCR detects DNA from both live and dead bacteria, leading to false positives and unnecessary or even wasteful remediation efforts​. To address this challenge, Promega has developed a viability qPCR method that retains the speed of molecular testing while distinguishing viable bacteria from non-viable remnants. In this third blog in our Legionella blog series, we cover how molecular detection methods can be refined to provide actionable results for Legionella monitoring. 

Continue reading “No More Dead Ends: Improving Legionella Testing with Viability qPCR”

Understanding Stress Resilience in Tomatoes: Insights Into the Role of PP2C Genes

An illustration of a tomato plant divided between normal and drought conditions. This study looks at the role of PP2C in stress response.

As climate change accelerates, understanding how crops survive environmental stress isn’t just an academic question—it’s a critical challenge for global food security. Tomatoes (Solanum lycopersicum), a staple crop worldwide, face increasing threats from drought, salinity, and extreme temperatures. But how do these plants adapt at the molecular level?

A recent study published in Scientific Reports ​investigated the evolutionary history, genomic diversity, and functional roles of protein phosphatase 2C (PP2C) genes in tomatoes (1). Instead of merely cataloging these genes, the researchers analyzed how PP2C gene expression changes under environmental stress. This information could help inform us about crop improvement strategies.

Continue reading “Understanding Stress Resilience in Tomatoes: Insights Into the Role of PP2C Genes”

How Promega Supports Sustainable Science

What is ACT and why does it matter?

The ACT label stands for Accountability, Consistency and Transparency. The ACT label provides information on the environmental impact of life science products to help researchers make informed choices about the products they use in their labs. ACT was developed by the non-profit organization My Green Lab, in collaboration with the International Institute for Sustainable Laboratories (I2SL).

The ACT label is one of the most comprehensive product labels for the life sciences. It measures the environmental impact of a product across four categories: manufacturing, user impact, end of life, and innovation. The criterion was developed with input from industry leaders, scientists, manufacturers, and sustainability directors. Most categories are scored on a scale from 1 to 10; 10 being the highest score. Other values are assigned a yes/no value or in some instances, a specific value per day (ex. kWh/day). The Environmental Impact Factor (EIF) is the summation of these categories. The varying energy usage and distinct reports across global markets has resulted in separate awards for different world regions. By choosing products with the ACT label, researchers can align their purchasing behaviors with any goals of reducing their environmental footprint and support sustainable practices in the life science industry.

Continue reading “How Promega Supports Sustainable Science”

Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus 

Tomatoes affected by a virus, showing the yellow and brown spots characteristic of ToBRFV.

In the Spring of 2015, greenhouse tomato plants grown in Jordan presented with a mosaic pattern of light and dark green patches on leaves, narrowing leaves, and yellow- and brown-spotted fruit (Salem et al. 2015). The pathogen was identified as a novel plant virus, the tomato brown rugose fruit virus (ToBRFV), and the original outbreak was traced back to the fall of 2014 to Israel (Luria et al. 2017).  This newly emerging virus can infect tomato and pepper plants at any stage of development and greatly affect crop yield and quality. Furthermore, the virus spreads rapidly by mechanical contact but can also be spread over long distances by contaminated seeds (Caruso et al. 2022), and as of 2022 it had been detected in 35 countries across four continents (Zhang et al. 2022).  Compounding its transmissibility, is the ability of the virus escape plant genetic resistance to viral infection (Zhang et al. 2022). There are seven host plants for the virus, including some common grasses and weeds, which could act as a reservoir for the virus, even if it is eliminated from commercial crops. Some researchers consider ToBRFV to be the most serious threat to tomato production in the world. 

Continue reading “Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus “

Rooted in Resilience: The Future of Pest-Resistant Crops

Sunlight illuminating crops growing in a field

Farmers everywhere strive to protect their crops and ensure a stable food supply while minimizing environmental harm. A promising approach to achieving this leverages a plant’s built-in defense mechanisms, reducing the need for chemical interventions. Many geneticists and agronomists lean on technologies that can automate and streamline nucleic acid extraction and pathogen detection to identify naturally pest resistant crops and, ultimately, keep up with the changing agricultural landscape.  

Continue reading “Rooted in Resilience: The Future of Pest-Resistant Crops”

Cyanobacteria Identified as Cause of Elephant Mass Mortality Event

The largest contiguous population of elephants in Africa lives in the Kavango-Zambezi Trans Frontier Conservation Area (KAZA TFCA) which encompasses parts of Botswana Zimbabwe, Zambia, Angola and Namibia. Within KAZA, nearly 90% of the elephant population is concentrated in Botswana (58%) and Zimbabwe (29%). In June of 2020, over 300 elephants were found dead in Botswana under mysterious circumstances. Less than two months later—in a span of only 27 days—34 more elephant deaths were reported in neighboring Zimbabwe. The news of these mass mortality events was both notable and concerning given the importance of the KAZA elephant metapopulation to species conservation.

Continue reading “Cyanobacteria Identified as Cause of Elephant Mass Mortality Event”

Coral, Ferrets and a Lot of Elephant Poop: 5 Years of the Revive & Restore Catalyst Science Fund

“We are expanding the toolkit available for conservation,” says Bridget Baumgartner, Director of Research and Development at Revive & Restore. “We’re a technology-focused organization with a network of technology experts – we’re here to help make researchers in this space as successful as possible.”

Bridget manages the Catalyst Science Fund for the non-profit Revive & Restore. This program has awarded more than 70 grants to researchers applying biotechnology tools in a unique way to support genetic rescue of endangered or extinct species. The fund was launched in 2018 with a $3 million pledge from Promega, and this year celebrated its fifth anniversary. In that time, projects supported by the Catalyst Science Fund have cloned a black footed ferret, developed methods for analyzing population genetics of isolated elephant herds, and much more.

“The donation from Promega enabled us to demonstrate that this long-term ‘Go Big or Go Home’ approach can create new capabilities that are going to be high-impact for wildlife conservation,” Bridget says.

Continue reading “Coral, Ferrets and a Lot of Elephant Poop: 5 Years of the Revive & Restore Catalyst Science Fund”

How do Scientists Connect Extreme Weather Events to Climate Change?

This year ushered in a series of intense weather events that impacted communities across the globe: record-breaking heat waves; super-charged cyclones; intense flooding; coastal waters hitting a balmy 38°C (1–4). Attributing extreme weather to climate change has become the norm when reporting on these seemingly more frequent and intense events. But beyond simply acknowledging weather to be more violent or destructive than it was in the past, how is it that climate experts are able to determine if increasing greenhouse gas levels are the culprit behind these extreme weather events? The answers can be found in climate attribution science.

Waves are whipped up on a flooded street while palm trees are bending under the force of the wind during hurricane Irma.
Attribution studies have shown that climate change increased the amount of rainfall during Hurricane Irma, a particularly intense 2017 hurricane (5).
Continue reading “How do Scientists Connect Extreme Weather Events to Climate Change?”

2023 Promega iGEM Grant Winners: Tackling Global Problems with Synthetic Biology Solutions

On June 15, 2023, we announced the winners of the 2023 Promega iGEM grant. Sixty-five teams submitted applications prior to the deadline with projects ranging from creating a biosensor to detect water pollution to solving limitations for CAR-T therapy in solid tumors. The teams are asking tough questions and providing thoughtful answers as they work to tackle global problems with synthetic biology solutions. Unfortunately, we could only award nine grants. Below are summaries of the problems this year’s Promega grant winners are addressing.

UCSC iGEM

An immature night heron against the green surface of Pinto Lake. 2023 Promega iGEM Grant Winner, UCSC iGEM seeks to mitigate these harmful aglal blooms.
A night heron hunts on Pinto Lake, California.

The UCSC iGEM team from the University of California–Santa Cruz is seeking a solution to mitigate the harmful algal blooms caused by Microcystis aeruginosa in Pinto Lake, which is located in the center of a disadvantaged community and is a water source for crop irrigation. By engineering an organism to produce microcystin degrading enzymes found in certain Sphingopyxis bacteria, the goal is to reduce microcystin toxin levels in the water. The project involves isolating the genes of interest, testing their efficacy in E. coli, evaluating enzyme production and product degradation, and ultimately transforming all three genes into a single organism. The approach of in-situ enzyme production offers a potential solution without introducing modified organisms into the environment, as the enzymes naturally degrade over time.

IISc-Bengaluru

Endometriosis is a condition that affects roughly 190 million (10%) women of reproductive age worldwide. Currently, there is no treatment for endometriosis except surgery and hormonal therapy, and both approaches have limitations. The IISc-Bengaluru team at the Indian Institute of Science, Bengaluru, India, received 2023 Promega iGEM grant support to investigate the inflammatory nature of endometriosis by targeting IL-8 (interleukin-8) a cytokine. Research by other groups has snow that targeting IL-8 can reduce endometriotic tissue. This team will be attempting to create an mRNA vaccine to introduce mRNA for antibody against IL-8 into affected tissue. The team is devising a new delivery mechanism using aptides to maximize the delivery of the vaccine to the affected tissues.

Continue reading “2023 Promega iGEM Grant Winners: Tackling Global Problems with Synthetic Biology Solutions”