As climate change accelerates, understanding how crops survive environmental stress isn’t just an academic question—it’s a critical challenge for global food security. Tomatoes (Solanum lycopersicum), a staple crop worldwide, face increasing threats from drought, salinity, and extreme temperatures. But how do these plants adapt at the molecular level?
A recent study published in Scientific Reports investigated the evolutionary history, genomic diversity, and functional roles of protein phosphatase 2C (PP2C) genes in tomatoes (1). Instead of merely cataloging these genes, the researchers analyzed how PP2C gene expression changes under environmental stress. This information could help inform us about crop improvement strategies.
The ACT label stands for Accountability, Consistency and Transparency. The ACT label provides information on the environmental impact of life science products to help researchers make informed choices about the products they use in their labs. ACT was developed by the non-profit organization My Green Lab, in collaboration with the International Institute for Sustainable Laboratories (I2SL).
The ACT label is one of the most comprehensive product labels for the life sciences. It measures the environmental impact of a product across four categories: manufacturing, user impact, end of life, and innovation. The criterion was developed with input from industry leaders, scientists, manufacturers, and sustainability directors. Most categories are scored on a scale from 1 to 10; 10 being the highest score. Other values are assigned a yes/no value or in some instances, a specific value per day (ex. kWh/day). The Environmental Impact Factor (EIF) is the summation of these categories. The varying energy usage and distinct reports across global markets has resulted in separate awards for different world regions. By choosing products with the ACT label, researchers can align their purchasing behaviors with any goals of reducing their environmental footprint and support sustainable practices in the life science industry.
In the Spring of 2015, greenhouse tomato plants grown in Jordan presented with a mosaic pattern of light and dark green patches on leaves, narrowing leaves, and yellow- and brown-spotted fruit (Salem et al. 2015). The pathogen was identified as a novel plant virus, the tomato brown rugose fruit virus (ToBRFV), and the original outbreak was traced back to the fall of 2014 to Israel (Luria et al. 2017). This newly emerging virus can infect tomato and pepper plants at any stage of development and greatly affect crop yield and quality. Furthermore, the virus spreads rapidly by mechanical contact but can also be spread over long distances by contaminated seeds (Caruso et al. 2022), and as of 2022 it had been detected in 35 countries across four continents (Zhang et al. 2022). Compounding its transmissibility, is the ability of the virus escape plant genetic resistance to viral infection (Zhang et al. 2022). There are seven host plants for the virus, including some common grasses and weeds, which could act as a reservoir for the virus, even if it is eliminated from commercial crops. Some researchers consider ToBRFV to be the most serious threat to tomato production in the world.
Farmers everywhere strive to protect their crops and ensure a stable food supply while minimizing environmental harm. A promising approach to achieving this leverages a plant’s built-in defense mechanisms, reducing the need for chemical interventions. Many geneticists and agronomists lean on technologies that can automate and streamline nucleic acid extraction and pathogen detection to identify naturally pest resistant crops and, ultimately, keep up with the changing agricultural landscape.
The largest contiguous population of elephants in Africa lives in the Kavango-Zambezi Trans Frontier Conservation Area (KAZA TFCA) which encompasses parts of Botswana Zimbabwe, Zambia, Angola and Namibia. Within KAZA, nearly 90% of the elephant population is concentrated in Botswana (58%) and Zimbabwe (29%). In June of 2020, over 300 elephants were found dead in Botswana under mysterious circumstances. Less than two months later—in a span of only 27 days—34 more elephant deaths were reported in neighboring Zimbabwe. The news of these mass mortality events was both notable and concerning given the importance of the KAZA elephant metapopulation to species conservation.
“We are expanding the toolkit available for conservation,” says Bridget Baumgartner, Director of Research and Development at Revive & Restore. “We’re a technology-focused organization with a network of technology experts – we’re here to help make researchers in this space as successful as possible.”
Bridget manages the Catalyst Science Fund for the non-profit Revive & Restore. This program has awarded more than 70 grants to researchers applying biotechnology tools in a unique way to support genetic rescue of endangered or extinct species. The fund was launched in 2018 with a $3 million pledge from Promega, and this year celebrated its fifth anniversary. In that time, projects supported by the Catalyst Science Fund have cloned a black footed ferret, developed methods for analyzing population genetics of isolated elephant herds, and much more.
“The donation from Promega enabled us to demonstrate that this long-term ‘Go Big or Go Home’ approach can create new capabilities that are going to be high-impact for wildlife conservation,” Bridget says.
This year ushered in a series of intense weather events that impacted communities across the globe: record-breaking heat waves; super-charged cyclones; intense flooding; coastal waters hitting a balmy 38°C (1–4). Attributing extreme weather to climate change has become the norm when reporting on these seemingly more frequent and intense events. But beyond simply acknowledging weather to be more violent or destructive than it was in the past, how is it that climate experts are able to determine if increasing greenhouse gas levels are the culprit behind these extreme weather events? The answers can be found in climate attribution science.
On June 15, 2023, we announced the winners of the 2023 Promega iGEM grant. Sixty-five teams submitted applications prior to the deadline with projects ranging from creating a biosensor to detect water pollution to solving limitations for CAR-T therapy in solid tumors. The teams are asking tough questions and providing thoughtful answers as they work to tackle global problems with synthetic biology solutions. Unfortunately, we could only award nine grants. Below are summaries of the problems this year’s Promega grant winners are addressing.
UCSC iGEM
A night heron hunts on Pinto Lake, California.
The UCSC iGEM team from the University of California–Santa Cruz is seeking a solution to mitigate the harmful algal blooms caused by Microcystisaeruginosa in Pinto Lake, which is located in the center of a disadvantaged community and is a water source for crop irrigation. By engineering an organism to produce microcystin degrading enzymes found in certain Sphingopyxis bacteria, the goal is to reduce microcystin toxin levels in the water. The project involves isolating the genes of interest, testing their efficacy in E. coli, evaluating enzyme production and product degradation, and ultimately transforming all three genes into a single organism. The approach of in-situ enzyme production offers a potential solution without introducing modified organisms into the environment, as the enzymes naturally degrade over time.
IISc-Bengaluru
Endometriosis is a condition that affects roughly 190 million (10%) women of reproductive age worldwide. Currently, there is no treatment for endometriosis except surgery and hormonal therapy, and both approaches have limitations. The IISc-Bengaluru team at the Indian Institute of Science, Bengaluru, India, received 2023 Promega iGEM grant support to investigate the inflammatory nature of endometriosis by targeting IL-8 (interleukin-8) a cytokine. Research by other groups has snow that targeting IL-8 can reduce endometriotic tissue. This team will be attempting to create an mRNA vaccine to introduce mRNA for antibody against IL-8 into affected tissue. The team is devising a new delivery mechanism using aptides to maximize the delivery of the vaccine to the affected tissues.
Solar panels on the roofs of Feynman Center, Kornberg Center, and the main Promega Madison parking structure
In 2021, we unveiled our most ambitious sustainability goals ever. These goals include a 50% reduction in carbon emissions by 2030, as indexed to revenue over a 2019 baseline.
Candida auris is a fungal infection sweeping through healthcare sites across the U.S.
HBO’s The Last of Us has successfully brought fungal pathogens to the forefront of the pandemic discourse, raising questions as to whether a fungus could really pose a significant threat to humans. While scientists agree that the fungus featured in the show, cordyceps, won’t be making the required inter-species jump any time soon, there is a fungal pathogen that has been taking root in hospitals across the U.S. which gives some cause for concern: Candida auris.
XWe use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To learn more about our approach to Privacy we invite you to Read More
By clicking “Accept All”, you consent to the use of ALL the cookies. However you may visit Cookie Settings to provide a controlled consent.
We use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To find out more about cookies and how to manage cookies, read our Cookie Policy.
If you are located in the EEA, the United Kingdom, or Switzerland, you can change your settings at any time by clicking Manage Cookie Consent in the footer of our website.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-advertisement
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
gdpr_status
6 months 2 days
This cookie is set by the provider Media.net. This cookie is used to check the status whether the user has accepted the cookie consent box. It also helps in not showing the cookie consent box upon re-entry to the website.
lang
This cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
SC_ANALYTICS_GLOBAL_COOKIE
10 years
This cookie is associated with Sitecore content and personalization. This cookie is used to identify the repeat visit from a single user. Sitecore will send a persistent session cookie to the web client.
vuid
2 years
This domain of this cookie is owned by Vimeo. This cookie is used by vimeo to collect tracking information. It sets a unique ID to embed videos to the website.
WMF-Last-Access
1 month 18 hours 24 minutes
This cookie is used to calculate unique devices accessing the website.
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
IDE
1 year 24 days
Used by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie
15 minutes
This cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
This cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
YSC
session
This cookies is set by Youtube and is used to track the views of embedded videos.
_gat_UA-62336821-1
1 minute
This is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.