The Casual Catalyst: Science Conversations and Cafes

There is no shortage of stories about great scientific collaborations that have taken root as the result of an excited conversation between two scientists over sandwiches and beer at a bar or a deli. One of the most famous examples of such a conversation was that between Herbert Boyer and Stanley Cohen when they attended a conference on bacterial plasmids in 1972—that very conversation led to the formation of the biotechnology field as the two scientists worked together to clone specific regions of DNA (1).  

“Over hot pastrami and corned beef sandwiches, Herbert Boyer and Stanley Cohen opened the door to genetic engineering and laid the foundations for gene therapy and the biotechnology industry.”  

Steven Johnson, author of Where Do Good Ideas Come From, credits the English coffee house as being crucial to the spread of the enlightenment movement in the 17th and 18th centuries (2). He argues that coffee houses provide a space where ideas can come together and form networks. In fact, he defines the concept of “idea” not as a single entity—a grand thought that poofs into existence upon hard work—but at its simplest level, a new idea is a new network of neurons firing in sync with each other.  

Johnson further argues that the development of great new ideas not only requires a space for ideas to bump into each other, connect and form a network, but also that great ideas are rarely the product of a single “Eureka” moment. Rather, they are slowly developing, churning hunches that have very long incubation periods (2).  

Science is Ripe with “Coffee House” Discoveries

Continue reading “The Casual Catalyst: Science Conversations and Cafes”

Expert Insights: A Look Forward at Multiplexing for in vivo Bioluminescence Imaging

Bioluminescent in vivo imaging tools

NanoLuc, NLuc

With advancements made over the past few decades, the future of in vivo bioluminescence imaging (BLI) continues to gain momentum. In vivo BLI provides a non-invasive way to image endogenous biological processes in whole animals. This provides an easier method to assess relevant systems and functions. Unlike fluorescent imaging, BLI relies on a combination of enzymes and substrates to produce light, greatly reducing background signal (Refaat et al., 2022). Traditional fluorescent tags are also quite large and may interfere with normal biological function. In vivo BLI research has been around for quite some time, primarily utilizing Firefly luciferase (Luc2/luciferin). A recent advancement was the creation of the small and bright NanoLuc® luciferase (NLuc). Promega offers an wide portfolio of NLuc products that provide ways to study genes, protein dynamics, and protein:protein interactions. To fully grasp the power of these tools, I interviewed several key investigators to determine their perspectives on the future of in vivo BLI. I was specifically interested in their thoughts on NLuc multiplexing potential with Firefly (FLuc), and future research areas. These two investigators are Dr. Thomas Kirkland, Sr. Scientific Investigator at Promega, and Dr. Laura Mezzanotte, Associate Professor at Erasmus MC.

Continue reading “Expert Insights: A Look Forward at Multiplexing for in vivo Bioluminescence Imaging”

To Tweet or Not to Tweet: Microblogging for Science Communication

Microblogging is a form of blogging characterized by a shortened format and frequent posting schedule. Instead of personal websites, microblogs reside on social media platforms or apps, making them accessible to interact with and post on smartphones. Microblogs focus on interacting with audiences directly. With the ability to reply to or repost content, microblogging is more conversational and collaborative with audiences than long- form writing.  

Laptop with a newspaper inside of it. next to emoji people connected across the globe.

After its founding in 2006, Twitter (recently renamed “X” by its new owner) quickly became the face of microblogging platforms. Users publish content to the platform in posts of 280 characters that can include images, gifs, videos, and what the platform is most known for: hashtags. Hashtags enable users to search the platform by topic to connect with or follow other users who are writing about those topics. Users can also interact with each other by liking or retweeting tweets, which posts them to their own account. The open forum discussion style makes it possible for individuals to share their stories, offering first-hand accounts of breaking news and fueling political movements such as the Women’s March and Black Lives Matter. 

Continue reading “To Tweet or Not to Tweet: Microblogging for Science Communication”

Sci Comm Tips From An iGEM Judge

Formal judgment in any context is nerve-racking. Scientists, familiar with being judged, rely on others to evaluate (and hopefully accept) everything from a PhD thesis defense to grant proposals and peer-reviewed journal article submissions. The frustrating part is not knowing exactly what the judges are looking for. Sure there are requirements and guidelines to follow—but how are the judges going to interpret them? It would be a whole lot easier if we could just peek into their minds. Unfortunately for most, that fantasy isn’t likely to turn into reality.

But if you are part of an iGEM team, today is your lucky day! Our own Preeta Guptan volunteers as a judge for the iGEM competition, and in today’s article, you will get her insider’s perspective about what iGEM judges look for. You will also get some tips to help you excel in the iGEM competition—and effectively communicate about science in general.

Preeta is an External Innovation Manager at Promega, which means she seeks out and investigates technology that might be valuable for Promega to license or acquire. The opportunity to scout up-and-coming synthetic biology advances was one reason she wanted to be an iGEM judge, but curiosity was at the core of her decision. Preeta and the other judges bring their unique perspectives and experiences to each iGEM project and team they evaluate. Here are some suggestions from Preeta:

Continue reading “Sci Comm Tips From An iGEM Judge”

It’s Almost iGEM Season—Help Is On The Way!

The 2019 iGEM Competition is on the horizon and team registration opens this month. We’re excited to partner with the iGEM Foundation again this year and offer our support to the young scientists who participate. If you’re starting an iGEM project, there are going to be things you need along the way. We are pleased to share a number of different ways we can help your iGEM team from now until the Giant Jamboree.

Grant Sponsorship

Tell us about your iGEM project and your team could win a 2019 Promega iGEM Grant Sponsorship. Ten winning teams will each receive $2000 in free Promega products to use for their iGEM projects. Tell us about your project—What problem are you addressing? What is your proposed solution? What challenges does your team face? Last year’s winning teams selected from a wide range of reagents and supplies, including master mix, restriction enzymes, ligase, DNA purification kits, expression systems, DNA ladders and markers, buffers and agarose. Click here to apply! Continue reading “It’s Almost iGEM Season—Help Is On The Way!”