Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection

Research in animal models shows physical exercise can induce changes in the brain. In humans, studies also revealed changes in brain physiology and function resulting from physical exercise, including increased hippocampal and cognitive performance (1). Several studies in mice and rats also demonstrated that exercise can improve learning and memory and decrease neuroinflammation in models of Alzheimer’s disease and other neurodegenerative pathologies (2); these benefits are tied to increased plasticity and decreased inflammation in the hippocampus in mice (2). If regular time pounding the pavement does improve brain function, what is the underlying molecular biology of exercise-induced neuroprotection? Can we identify the cellular pathways and components involved? Can we detect important components in blood plasma? And, is the benefit of these components transferrable between organisms? De Miguel and colleagues set out to answer these questions and describe their results in a recent study published in Nature.

A recent study investigates the underlying molecular mechanisms of exercise-induced neuroprotection in a mouse model.
Continue reading “Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection”

How to Commit to Global Responsibility with Local Accountability

This summer, Dr. Anette Leue, Director of Digital Marketing and PR Promega GmbH, represented Promega Corporation in Sustainability Day activities sponsored by Smart Lab Connects. Dr. Leue presented Promega Corporation’s corporate responsibility activities and joined a panel discussion about global responsibility with representatives from Eppendorf, Max Planck Sustainability Network, and NIUB Sustainability Consultants.

Dr. Anette Leue, pictured, talked about global responsibility as part of Sustainability Day.

As the Sustainability Day activities progressed, what became apparent is that calls for sustainable business growth are coming from all directions. Customers of life sciences companies are asking, “what are you doing to be a responsible company”? And, employees also are asking the same question of their employers. This interest sustainability and global responsibility by customers, employees and local communities is bringing into sharp focus the activities of companies to be good corporate citizens. Sustainability and global responsibility programs are no longer nice extras for life science companies, but rather are requirements for doing business.

“Sustainability is not a “nice to have”, but something that should be intrinsically implemented in the companies.”

Dr. Anette Leue
Continue reading “How to Commit to Global Responsibility with Local Accountability”

The Stories in the Bones: DNA Forensic Analysis 20 Years after 9/11

September 11, 2001 is the day that will live in infamy for my generation. On that beautiful late summer day, I was at my desk working on the Fall issue of Neural Notes magazine when a colleague learned of the first plane hitting the World Trade Center. As the morning wore on, we learned quickly that it wasn’t just one plane, and it wasn’t just the World Trade Center.

Two beams of light recognized the site of the World Trade Center attack. Today DNA forensic analysis applies new technologies to bring closure to families of victims.

Information was sparse. The world wide web was incredibly slow, and social media wasn’t much of a thing—nothing more than a few listservs for the life sciences. Someone managed to find a TV with a rabbit-eared, foil-covered antenna, and we gathered in the cafeteria of Promega headquarters—our shock growing as more footage became available. At Promega, conversation immediately turned to how we could bring our DNA forensic analysis expertise to help and support the authorities with the identification of victims and cataloguing of reference samples.

Just as the internet and social media have evolved into faster and more powerful means of communication—no longer do we rely on TVs with antennas for breaking news—the technology that is used to identify victims of a tragedy from partial remains like bone fragments and teeth has also evolved to be faster and more powerful.

Teeth and Bones: Then and Now

“Bones tell me the story of a person’s life—how old they were, what their gender was, their ancestral background.”  Kathy Reichs

Many stories, both fact and fiction, start with a discovery of bones from a burial site or other scene. Bones can be recovered from harsh environments, having been exposed to extreme heat, time, acidic soils, swamps, chemicals, animal activities, water, or fires and explosions. These exposures degrade the sample and make recovering DNA from the cells deep within the bone matrix difficult.

Continue reading “The Stories in the Bones: DNA Forensic Analysis 20 Years after 9/11”

Science and Journalism – Opposites or Not So Much?

This blog was written in collaboration with our partners at Promega GmbH.

Scientists are comfortable speaking to people who know their field. Speaking to scientists outside of their field of expertise can become a little more challenging, and many find the greatest challenge of all is speaking to people who do not have a science background and are hearing about a scientific concept for the first time, such as journalists in the popular media. What can scientists and journalists do to make the most of the interface of science and journalism?

Digital image depicting the intersection of science and journalism.

The importance of the interface between science and journalism is increasingly visible with scientific topics appearing on the national news more frequently due to COVID-19, climate change, and diseases like cancer. So, where can journalists go to learn best practices for interviewing scientists and writing about scientific topics? Promega GmbH offers a platform in which scientists and journalists come together and learn from each other in a constructive exchange. In this workshop setting, scientists speak about a certain topic, and journalists from all kinds of backgrounds can ask questions. When the journalist authors an article about what they learned in that workshop, both sides benefit. The scientists’ work becomes visible, and society learns more about scientific research and discovery that can help all of us to better understand the world and contribute to a brighter future.

Here we describe several common themes that have emerged from these science journalism workshops that may help you the next time you find yourself trying to explain your research to someone unfamiliar with your field.

Continue reading “Science and Journalism – Opposites or Not So Much?”

HPK1 Identified as Emerging Immuno-oncology Drug Target

Antibody-based immune checkpoint inhibitors remain a major focus of immuno-oncology drug research and development efforts because of their recent success in providing long-term anti-tumor responses. However, the range of response of different tumor types to these drugs is hugely varied. Small molecule kinase inhibitors that block signaling pathways involved in regulation of tumor immunity at multiple points in the “cancer immunity cycle” may provide alternate, effective therapeutics. One kinase that may be a target for such small molecule inhibitors is Hematopoietic Progenitor Kinase 1 or HPK1; the potential of this kinase as a therapeutic target was reviewed by Sawasdikosol and Burakoff (1). HPK1, also known as MAP4K1, is a member of the MAP kinase protein kinase family that negatively regulates signal transduction in T-cells, B-cells and dendritic cells of the immune system.

Artist rendering of what target engagement might look like for kinases like HPK1.
NanoBRET™ Target Engagement Assay (artist rendering)
Continue reading “HPK1 Identified as Emerging Immuno-oncology Drug Target”

The Work of Emmett Chappelle: Lighting Up the Search for Extraterrestrial Life

What do the workings of red blood cells, ensuring breathable air for astronauts, and scraping soil off NASA’s Viking spacecraft have in common? The sharp thinking of biochemist Emmett Chappelle.

Image of Emmett Chappelle working with other scientists.
Emmett Chappelle conducting research.

February is Black History Month in the US—a time to reflect on the contributions of African Americans in all fields and celebrate their accomplishments while recognizing the adversity they had to overcome in American society.

2021 also marks 30 years since the first firefly luciferase reporter vectors and detection reagents became available as products. There’s no better person to highlight this month than Emmett Chappelle, whose work with the luciferase reaction is still used for many applications today.

Continue reading “The Work of Emmett Chappelle: Lighting Up the Search for Extraterrestrial Life”

Screen Media in the Time of COVID-19: Should You Be Reading this Blog?

Screen Media. Cell phones. Social media accounts. If you are a parent, you have probably discussed rules of engagement with your children about these things. All of our modern social media platforms are designed to keep us engaged with them by showing us the latest post, the next video or the people now online. Work emails give us notifications when something arrives in our Inbox. Business software platforms like Microsoft Teams send us notifications whenever someone comments in a conversation we have ever been part of. There are many siren signals pulling us toward our screens.

Enter COVID-19, the flu-like illness caused by the SARS-CoV-2 virus that has already claimed the lives of 210,000 people in the United States, and leaving countless others permanently affected by other long-term health consequences. Spread by aerosol, COVID-19 is most dangerous in places where lots of people congregate in a small area, particularly if they are talking to each other. Consequently, office buildings are empty as many of us work or go to school remotely.

Before COVID-19, if I had a day full of meetings at work, I was running from conference room to conference room, two miles, uphill, in the snow between buildings. Now, a day full of meetings means sitting in front of a computer monitor, trying to figure out how I will get any kind of break between calls. The average number of steps recorded by my pedometer has decreased markedly since March when our remote work started.

Technology has been an incredible blessing during this pandemic—allowing us to continue to work and stay connected with friends and family. Technology is the only way that some people can connect with loved ones in long-term care facilities. It allows students to continue learning through remote classrooms and chats.

But what has been the effect of the increased time spent on screens during this pandemic?

Continue reading “Screen Media in the Time of COVID-19: Should You Be Reading this Blog?”

Maximize Your Time in the Lab: Improve Experimental Reproducibility with Thaw-and-Use Cells

Many cell biology researchers can name their department’s  or institutions’s “cell culture wizard”—the technician with 20+ years of experience whose cell cultures are always free from contamination, exhibit reliable doubling rates and show no phenotype or genotype weirdness. Cell culture takes skill and experience. Primary cell culture can be even more difficult still, and many research and pharmaceutical applications require primary cells.

Yet, among the many causes of failure to replicate study results, variability in cell culture stands out (1). Add to the normal challenges of cell culture a pandemic that shut down cell culture facilities and still limits when and how often researchers can monitor their cell culture lines, and the problem of cell culture variability is magnified further.

Treating Cells as Reagents

A good way to reduce variability in cell-based studies is to use the thaw-and-use frozen stock approach. This involves freezing a large batch of “stock” cells, then performing quality control tests to ensure they respond appropriately to treatment. Then whenever you need to perform an assay, just thaw another vial of cells from that batch and begin your assay—just like an assay reagent! This approach eliminates the need to grow your cells to a specific stage, which could take days and introduce more variability.

Continue reading “Maximize Your Time in the Lab: Improve Experimental Reproducibility with Thaw-and-Use Cells”

The Path Brightens for Vaccine Researchers: Luminescent Reporter Viruses Detect Neutralizing Antibodies

Developing a vaccine that is safe, effective, easily manufactured and distributed is a daunting task. Yet, that is exactly what is needed in response to the COVID-19 pandemic.

Computer generated 3D image of coronavirus

Vaccine development, safety and efficacy testing take time. The mumps vaccine is thought to be the quickest infectious disease vaccine ever produced, and its development required four years from sample collection to licensing (2). However, there are many reasons to anticipate quicker development for a COVID-19 vaccine: Researchers are collaborating in unprecedented ways, and most COVID-19 scientific publications are free for all to access and often available as preprints. As of August 11, 2020, researchers around the globe have more than 165 vaccine candidates in development, 30 of which are in some phase of human clinical trials (1). The range of vaccine formulations available to scientists has expanded to include RNA and DNA vaccines, replication-defective adenovirus vaccines, inactivated or killed vaccines and subunit protein vaccines. Equally important is that vaccine developers and researchers have greater access to powerful molecular biology tools like bioluminescent reporters that enable quicker testing and development.

Continue reading “The Path Brightens for Vaccine Researchers: Luminescent Reporter Viruses Detect Neutralizing Antibodies”

An art award for a picture of a rock? A decade of the UW-Madison Cool Science Image Contest

Celebrating the art of science is something the University of Wisconsin-Madison Cool Science Image Contest has been doing since its inception 10 years ago as part of The Why Files. The 2020 winning images include entries as diverse as videos of neural stem cells, eye-ball licking geckos and yes, even a picture of rock: actually a thin section of tractolite, an igneous rock composed of feldspar and olivine  collected near Duluth Minnesota form the Proterozoic Mid-continent Rift. This image was collected by Natalie Betz, PhD, Associate Director of the UW-Madison Master of Science in Biotechnology program and her daughter Anya Wolterman, a recent graduate of Macalester College with degrees in Geology and Physics. Natalie has a long-time connection with Promega and the BioPharmaceutical Technology Center Institute, so we reached out to her to get the perspective of a contest entrant.  Natalie is answering for both her and her daughter while her daughter is away doing some trail maintenance in the Rockies and is not available for comment.

This thin section of troctolite, an igneous rock composed of feldspar and olivine, was collected near Duluth, Minnesota, from the Proterozoic Midcontinent Rift. The rift is a tear in the Earth’s crust caused by continental plates colliding in the Lake Superior region. Polarized light accentuates vivid colors.

Promega Connections: Why did you decide to enter the UW Cool Science Image contest?

Continue reading “An art award for a picture of a rock? A decade of the UW-Madison Cool Science Image Contest”