Meet Měnglà Virus: the newest cousin in the Ebola and Marburg virus family tree

Ebola virus (EBOV) and Marburg virus (MARV) are two closely-related viruses in the family Filoviridae. Filoviruses are often pathogenic, causing hemorrhagic fever disease in human hosts. The Ebola outbreak of 2014 caught the world by surprise by spreading so quickly and severely that public health organizations were unprepared. The devastating outcome was a total of over 11,000 deaths by the time the outbreak ended in 2016. Research that provides further understanding of filoviruses and their potential for transmission is important in preventing future outbreaks from occurring. But what if the outbreak comes from a virus we’ve never seen before?

fruit_bat
Měnglà virus was discovered among filoviruses isolated from Old World fruit bats (Rousettus)

All in the viral family

A recent study published in the journal Nature Microbiology provides evidence of a newly identified filovirus species. Using serum samples taken from bats, a well-known host for filoviruses, Yang et al. isolated and identified viral RNA for an unclassified viral genome sequence using next generation sequencing analysis. This new virus genome sequence was organized with the same open reading frames as other filoviruses, encoding for nucleoprotein (NP), viral protein 35 (VP35), VP40, glycoprotein (GP), VP30, VP24, and RNA-dependent RNA polymerase (L). This new genome sequence shared up to 54% of the nucleotide sequences for the filovirus species Lloviu virus (LLOV), EBOV and MARV, with MARV being the most similar. Their analysis suggested that this novel virus should be classified within the Filoviridae family tree as a separate genus, Dianlovirus, and was named Měnglà virus (MLAV).

Continue reading “Meet Měnglà Virus: the newest cousin in the Ebola and Marburg virus family tree”

Virtual Reality Is Changing How We Experience Science

The South Pole was exactly as I expected—snowy and barren, apart from the giant research station in front of me. Suddenly, I got a notification in my communication system that there was a strong signal coming from the sky. I looked up and changed the visual display settings of my goggles to find stunning views of the Solar System, all the way past Pluto. My heads-up display told me that I’ve discovered a subatomic particle, called a neutrino, that flies through the fabric of space at nearly the speed of light. I wanted to find the source of this neutrino, so I switched my display to X-ray vision. The signal brightened, and the source was revealed—a massive black hole. I captured as much data as possible so I could report back to the lead scientist on the project. What an exciting afternoon of research!

Okay, I’ve never actually been to the South Pole, but I experienced this event in virtual reality at a conference expo booth for the National Science Foundation. This experience put me in the shoes of an astrophysicist working at the IceCube Neutrino Detection Facility, operated by UW-Madison researchers. As someone who specializes in the life sciences, I had the opportunity to learn more about an area outside my expertise—the fascinating world of particle physics.

VR headsets offer immersive experiences for entertainment, education, training, and more.

Most people think of augmented reality (AR) and virtual reality (VR) in the context of gaming or entertainment. You’ve likely had a casual AR experience if you’ve ever given yourself a flower crown in Snapchat, or hunted for Charmander at your local park with the Pokémon GO app. Yet, as I experienced at a conference several weeks ago, AR and VR can have massive implications for education and training experiences in the sciences. Continue reading “Virtual Reality Is Changing How We Experience Science”

A Tale of Two Toxins: the mechanisms of cell death in Clostridium difficile infections

When someone is admitted to a hospital for an illness, the hope is that medical care and treatment will help them them feel better. However, nosocomial infections—infections acquired in a health-care setting—are becoming more prevalent and are associated with an increased mortality rate worldwide. This is largely due to the misuse of antibiotics, allowing some bacteria to become resistant. Furthermore, when an antibiotic wipes out the “good” bacteria that comprise the human microbiome, it leaves a patient vulnerable to opportunistic infections that take advantage of disruptions to the gut microbiota.

One such bacteria, Clostridium difficile, is of growing concern world-wide since it is resistant to many different antibiotics. When a patient is treated with an antibiotic, C. difficile can thrive in the intestinal tract without other bacteria populating the gut. C. difficile infection is the leading cause of antibiotic-associated diarrhea. While symptoms can be mild, aggressive infection can lead to pseudomembranous colitis—a severe inflammation of the colon which can be life-threatening.

C. difficile causes disease by releasing two large toxins, TcdA and TcdB. Understanding the role these toxins play in colonic disease is important for treatment strategies. However, most published research data only report the effects of the toxins independently. A 2016 study demonstrated a method of comparing the toxins side-by-side using the same time points and cell assays to investigate the role each toxin plays in the cell death that leads to disease of the colon. Continue reading “A Tale of Two Toxins: the mechanisms of cell death in Clostridium difficile infections”