Immunometabolism is the study of how metabolic processes influence immune cell functions and how immune responses, in turn, shape cellular metabolism. This field examines the roles of cytokines and metabolites, which act as signaling molecules and energy sources, respectively. Cytokines can trigger or modulate metabolic pathways in immune cells, affecting their activation, growth, and response capabilities. Similarly, metabolites provide the necessary energy and building blocks that enable immune cells to proliferate, function optimally, and sustain their activity during immune responses. This dynamic interplay is crucial for maintaining health and combating disease. Together, cytokines and metabolites orchestrate a complex network that links metabolic health with immune competence on a systemic and cellular level. This blog discusses how cytokines and metabolites not only influence but also drive immune cell functions, revealing new avenues for therapeutic interventions across a range of diseases.
Continue reading “Immunometabolism: The Dynamic Interplay of Cytokines and Metabolites”Author: Kendra Hanslik
Decoding the NAD+/NADH Ratio and Its Crucial Role in Cell Health
Nicotinamide adenine dinucleotide (NAD) exists in two forms in the cell: NAD+ (oxidized) and NADH (reduced). This molecule plays a pivotal role in metabolic processes, serving as a key electron carrier in the redox reactions that drive cellular metabolism. The balance between these two forms, commonly expressed as the NAD+/NADH ratio, is crucial for maintaining cellular function and the intracellular redox state. This article explores the significance of this ratio, how it impacts cellular processes, and the consequences of NAD+/NADH ratio dysregulation.
Continue reading “Decoding the NAD+/NADH Ratio and Its Crucial Role in Cell Health”Decades of Discovery: How the NCI-60 Revolutionized Cancer Drug Screening
The National Cancer Institute’s NCI-60 drug screening panel, comprised of 60 diverse human cancer cell lines, has been a cornerstone in advancing cancer research and drug discovery since its inception in the late 1980s. Developed in response to the need for more predictive and comprehensive preclinical models, the NCI-60 facilitates the screening of thousands of compounds annually, aiming to identify potential anti-cancer drugs across a broad spectrum of human cancers. This article traces the origins, development, and evolution of the NCI-60 panel, highlighting its significant role in advancing our understanding of cancer and therapeutic agents.
Continue reading “Decades of Discovery: How the NCI-60 Revolutionized Cancer Drug Screening”Connecting Synaptic Gene Polymorphisms to Parkinson’s Disease
Neurodegenerative disorders represent a significant and growing concern in the realm of public health, particularly as global populations age. Among these, Parkinson’s disease (PD) stands out due to its increasing prevalence and profound impact on individuals. Characterized by the progressive degeneration of motor functions, PD is not just a health challenge but also poses substantial socio-economic burdens. While the etiology of Parkinson’s disease is far from simple, current research efforts elucidating its causes, mechanisms, and potential treatments illustrate the critical nature of this neurodegenerative disorder in today’s healthcare landscape.
In the clinic, Parkinson’s disease is often diagnosed as either sporadic or familial. Familial PD has a clear genetic basis, typically passed down through families, while sporadic PD, comprising about 90% of cases, occurs in individuals without a known family history of the disease. The exact cause of sporadic PD is not fully understood but is believed to be due to a combination of genetic predispositions and environmental factors. In contrast, the factors involved in familial PD are more thoroughly understood, offering insights into the molecular mechanisms underlying PD pathogenesis.