The Role of Bioassays in Testing New Therapeutics for Canine Cancer

Immunoassays are bringing new hope to the treatment of canine cancer.

Every dog owner fears the day they might hear the word “cancer” from their vet. This devastating disease affects not only humans but our canine companions as well. Veterinary scientists and clinicians are now employing the same methods as researchers studying human cancer, bringing the tools of personalized cancer treatment and drug research and development to bear on canine cancer, and in the not-too-distant future the treatment for a dog’s cancer may become as personalized as the bond they share with their owner.

Developing and testing new drugs and therapies is crucial to improving cancer treatments for canines. One of the most powerful tools in the drug development toolbox is the bioassay. Bioassays enable scientists to measure the biological activity of a potential treatment compound to determine if it might be effective as a therapeutic agent. For researchers focused on advancing canine cancer therapies, bioassays are indispensable. They offer precise insights into how new drugs interact with cancer cells and the immune system.

Continue reading “The Role of Bioassays in Testing New Therapeutics for Canine Cancer”

Why Do We Love Being Scared? The Science Behind Horror Movies

Haunted mansion with pointed towers in a foggy, moonlit forest, creating a spooky, eerie atmosphere.

There’s something oddly captivating about watching a film that makes you jump, scream, or better yet—a film that sticks with you long after watching. Millions of people embrace the fear, willingly diving into the dark world of horror movies. But why? What is the appeal of subjecting ourselves to terror? The reasons we watch and enjoy scary movies go far beyond the jump scares—they’re deeply psychological.

For those who find themselves covering their eyes or clutching the nearest pillow, it might be hard to understand. Yet, as the hair-raising month of October ends, many people spent the 31 days leading up to Halloween watching films designed to scare the daylights out of them. In this blog, we explore why people enjoy fear (or why they don’t) and what psychology reveals about the movies that truly terrify us.

Continue reading “Why Do We Love Being Scared? The Science Behind Horror Movies”

Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness

influenza viruses are part of the worldwide respiratory virus landscape

Since the COVID-19 pandemic, public health researchers and research scientists have sought more urgently to understand the worldwide respiratory virus landscape. The COVID-19 pandemic has forced us to re-evaluate our global public health priorities and activities. Additionally, acute respiratory tract infections are one of the leading causes of illness and death worldwide, particularly in developing countries. To really understand what changed with the pandemic and how we can best respond going forward, we need to understand what the baseline landscape was before the pandemic. Studies using samples that were collected prior to the pandemic are essential to this effort.

Continue reading “Exploring the Respiratory Virus Landscape: Pre-Pandemic Data and Pandemic Preparedness”

Neurons’ Role in FBP2 Regulation

Neuronal extracellular vesicles (NEVs) play a significant role in the communication between neurons and astrocytes, particularly by influencing metabolic processes such as glycolysis and lactate production. NEVs carry signaling molecules that affect the expression, degradation and oligomeric state of fructose 1,6-bisphosphatase 2 (Fbp2) in astrocytes, altering their metabolism (1).

Basic Backstory on CNS Architecture
The central nervous system (CNS) is composed of an intricate cellular communications complex, divided generally into neurons and glial cells. Neurons form the electrical signaling network, with dendrites receiving and integrating signals via chemical synapses, and axons, some up to 1 meter in length, rapidly transmitting the signals.

Glial cells, including astrocytes, microglia and other cells, interact with neuronal cells to sustain this network. For example, glial cells regulate synapse formation and provide metabolic support to promote CNS homeostasis. Glial cell dysfunction contributes to most neural diseases and can even drive neurodegenerative processes (2).

What are Neuronal Extracellular Vesicles (NEVs)?
NEVs are formed by neurons via endocytosis and are released into the extracellular space where they interact with astrocytes. These transport vesicles carry a variety of molecules, including proteins and RNA, that influence cellular processes in recipient astrocytes.

NEV and Astrocyte Interactions
Fbp2 is an important enzyme involved in glycogen synthesis that also has nonenzymatic functions, including support of neuronal processes like long-term potentiation (LTP). LTP underlies synaptic strength and plasticity and is important in both learning and memory formation.

Continue reading “Neurons’ Role in FBP2 Regulation”

Third Annual Targeted Protein Degradation Symposium: Embracing the Excitement of Discovery

The third annual Targeted Protein Degradation (TPD) Symposium just wrapped up last month. It was kicked off with Poncho Meisenheimer, VP of Research and Development at Promega, likening the gathering of researchers to “kids in a biology candy store.” This playful analogy captured the vibrant energy and sense of exploration among the attendees, who convened to delve into the future possibilities of proximity-induced degradation. Poncho left attendees with three key questions to consider throughout the symposium:

  1. How can we focus on quantitative measures of cellular events in relevant models?
  2. How do we generate results that serve both human and AI models?
  3. How do we best embrace the excitement of discovery?

Nearly 150 participants from both industry and academia attended the two-day symposium. It was held on September 11th and 12th at Promega’s R&D hub, the Kornberg Center, in Madison, Wisconsin. The event, now in its third year, provided a familiar environment where collaborations flourished, and many attendees rekindled connections forged through previous interactions or partnerships in the field.

Continue reading “Third Annual Targeted Protein Degradation Symposium: Embracing the Excitement of Discovery”

Tardigrade Proteins Might Solve the Cold Chain Problem for Biologics

image depicting a microscopic tardigrade

Some of our most advanced medicines today rely on components derived from living organisms. These therapeutics, called biologics, include things like vaccines, blood products like Human Blood Clotting Factor VIII (FVIII), antibodies and stem cells. Biologics are incredibly temperature sensitive, which means they need to be kept cold during production, transport and storage, a process collectively called the cold chain. The stringent transport and storage temperature requirements for biologics create a barrier to accessing these lifesaving options; particularly for those in remote or underdeveloped regions, where maintaining a cold chain is logistically difficult and costly.

But what if we could break the cold chain? Inspired by one of the most resilient creatures on Earth – the tardigrade – scientists at the University of Wyoming are exploring ways to do just that.

Continue reading “Tardigrade Proteins Might Solve the Cold Chain Problem for Biologics”

From Fins to Genes: DNA Barcoding Unlocks Marine Diversity Along Mozambique’s Coast

DNA Barcding unlocks marine diversity along Mozambique's coast

The Mozambique Channel, which is located between the Madagascar and Mozambique on the African coast, is an important hot spot for biodiversity because its many coastal ecosystems provide a range of habitats that support diverse plant and animal species. Understanding the biodiversity of an ecosystem, particularly biodiversity hot spots, is important for many reasons. For marine systems, accurate classification and reporting of fish species supports fisheries research, natural resource surveys, forensic studies, conservation studies, and enables discovery of new or under-reported species. Studies have been limited along the west coast of Africa and are only now in their early stages.

A 2024 research study by Muhala and colleagues applied DNA barcoding to evaluate the composition of marine and coastal fish diversity from the Mozambican coast. In the study, the Wizard® Genomic DNA Purification Kit was used to extract DNA from both teleost (ray-finned) and elasmobranch (sharks, rays and skates) fish classes, with a total of 143 species sampled from local artisanal fisheries along the Mozambican coast. The samples were primarily composed of muscle or fin tissues, which are ideal for genetic analysis due to their higher DNA yield. These tissue samples were collected from various fish species captured along the coast of Mozambique, stored in ethanol (96%) to preserve DNA integrity, and then processed using the Wizard kit. Total genomic DNA was extracted from the muscle or fin tissues, as per the manufacturer’s protocol. This method ensures the isolation of high-quality genomic DNA, which is crucial for subsequent polymerase chain reaction (PCR) amplification and sequencing. The COI gene (cytochrome c oxidase subunit I) was targeted for DNA barcoding, enabling species identification and assessment of genetic diversity.

Continue reading “From Fins to Genes: DNA Barcoding Unlocks Marine Diversity Along Mozambique’s Coast”

Extreme Makeover, Epidemic Edition: Can Ants Modify Their Nests for Survival?  

Ants on a hill

Imagine if your first instinct during an epidemic wasn’t to wear a mask or stock up on groceries, but instead to start rearranging and remodeling your house. As it turns out, researchers have found that black garden ants (Lasius niger) do exactly that when confronted with the threat of disease. These tiny architects instinctively spring into action, redesigning their nests in various ways to slow the spread of infection and protect their crowded colonies where diseases can easily spread.  

Read more about the research and see how these findings offer insights into how spatial changes – both in ants and potentially in human environments – can help limit the risks of infection.  

Continue reading “Extreme Makeover, Epidemic Edition: Can Ants Modify Their Nests for Survival?  “

Visualize Protein:Protein Interactions with Bioluminescence Imaging

If you’re familiar with bioluminescence, you’ve probably used it in plate-based experiments to track various biological processes. You understand it provides distinct advantages over traditional fluorescence assays, particularly when it comes to sensitivity. However, there’s always that one nagging question: how representative is the signal on a cell-to-cell level?

Traditional approaches to decipher cell-to-cell signal rely on complex, time-intensive measures that only approximated the findings acquired through bioluminescence. That’s where the GloMax® Galaxy Bioluminescence Imager comes in. This new tool will enhance your ability to visualize proteins using NanoLuc® technology, going beyond simple numeric outputs to reveal what’s happening in individual cells.

NanoLuc® technology is well-known for its ability to assist in detecting subtle protein interactions in complex biological systems. This bright luminescent enzyme enables a much broader linear range than fluorescence, improving detection of small changes in protein activity, such as proteins interacting. Microplate readers measuring NanoLuc® assays rely on signal generated from many cells. This results in an approximation of what is occurring biologically. Truly validating those luminescent readings within a cell population has been challenging—until now. The GloMax® Galaxy allows you to perform bioluminescence imaging, moving beyond the numbers, offering the power to visualize protein interactions directly.

Continue reading “Visualize Protein:Protein Interactions with Bioluminescence Imaging”

Understanding the Promise of Immunotherapy in Veterinary Medicine

Immunotherapy in veterinary medicine is a rapidly evolving field that leverages the immune system to fight diseases. These therapies are particularly effective in treating various cancers, including lymphomas, mast cell tumors, melanomas, and osteosarcomas. Beyond cancer, immunotherapies are also being explored for their potential in managing chronic inflammatory diseases, such as autoimmune disorders where the immune system mistakenly attacks the body’s own tissues. While traditionally, veterinary treatments have focused on surgery, chemotherapy, and radiation, the advent of immunotherapy offers a more targeted approach, particularly for conditions like cancer.  

This targeted approach not only minimizes collateral damage to healthy tissues but also offers the potential for longer-lasting protection by training the immune system to recognize and fight off recurrence of the disease. The interest in immunotherapies has grown in tandem with advancements in human oncology, leading to a crossover of technologies and methodologies into veterinary applications. 

How Does Immunotherapy Work?

Continue reading “Understanding the Promise of Immunotherapy in Veterinary Medicine”